2018 Bosnia and Herzegovina Team Selection Test

April 21st - Day 1

1

In acute triangle $ABC$ $(AB < AC)$ let $D$, $E$ and $F$ be foots of perpedicular from $A$, $B$ and $C$ to $BC$, $CA$ and $AB$, respectively. Let $P$ and $Q$ be points on line $EF$ such that $DP \perp EF$ and $BQ=CQ$. Prove that $\angle ADP = \angle PBQ$

2

Let $a_1,a_2,\ldots a_n,k$, and $M$ be positive integers such that $$\frac{1}{a_1}+\frac{1}{a_2}+\cdots+\frac{1}{a_n}=k\quad\text{and}\quad a_1a_2\cdots a_n=M.$$If $M>1$, prove that the polynomial $$P(x)=M(x+1)^k-(x+a_1)(x+a_2)\cdots (x+a_n)$$has no positive roots.

3

Find all values of positive integers $a$ and $b$ such that it is possible to put $a$ ones and $b$ zeros in every of vertices in polygon with $a+b$ sides so it is possible to rotate numbers in those vertices with respect to primary position and after rotation one neighboring $0$ and $1$ switch places and in every other vertices other than those two numbers remain the same.

April 22nd - Day 2

4

Every square of $1000 \times 1000$ board is colored black or white. It is known that exists one square $10 \times 10$ such that all squares inside it are black and one square $10 \times 10$ such that all squares inside are white. For every square $K$ $10 \times 10$ we define its power $m(K)$ as an absolute value of difference between number of white and black squares $1 \times 1$ in square $K$. Let $T$ be a square $10 \times 10$ which has minimum power among all squares $10 \times 10$ in this board. Determine maximal possible value of $m(T)$

5

Let $ p \geq 2$ be a prime number. Eduardo and Fernando play the following game making moves alternately: in each move, the current player chooses an index $i$ in the set $\{0,1,2,\ldots, p-1 \}$ that was not chosen before by either of the two players and then chooses an element $a_i$ from the set $\{0,1,2,3,4,5,6,7,8,9\}$. Eduardo has the first move. The game ends after all the indices have been chosen .Then the following number is computed: $$M=a_0+a_110+a_210^2+\cdots+a_{p-1}10^{p-1}= \sum_{i=0}^{p-1}a_i.10^i$$. The goal of Eduardo is to make $M$ divisible by $p$, and the goal of Fernando is to prevent this. Prove that Eduardo has a winning strategy. Proposed by Amine Natik, Morocco

6

Let $O$ be the circumcenter of an acute triangle $ABC$. Line $OA$ intersects the altitudes of $ABC$ through $B$ and $C$ at $P$ and $Q$, respectively. The altitudes meet at $H$. Prove that the circumcenter of triangle $PQH$ lies on a median of triangle $ABC$.