Two circles are tangent to each other internally at a point $\ T $. Let the chord $\ AB $ of the larger circle be tangent to the smaller circle at a point $\ P $. Prove that the line $\ TP $ bisects $\ \angle ATB $.
2009 Singapore Team Selection Test
Day 1
If $a$, $b$ ,$c$ are three positive real numbers such that $ab+bc+ca = 1$, prove that \[ \sqrt[3]{ \frac{1}{a} + 6b} + \sqrt[3]{\frac{1}{b} + 6c} + \sqrt[3]{\frac{1}{c} + 6a } \leq \frac{1}{abc}. \]
Determine the smallest positive integer $\ N $ such that there exists 6 distinct integers $\ a_1, a_2, a_3, a_4, a_5, a_6 > 0 $ satisfying: (i) $\ N = a_1 + a_2 + a_3 + a_4 + a_5 + a_6 $ (ii) $\ N - a_i$ is a perfect square for $\ i = 1,2,3,4,5,6 $.
Day 2
Let $S=\{a+np : n=0,1,2,3,... \}$ where $a$ is a positive integer and $p$ is a prime. Suppose there exist positive integers $x$ and $y$ st $x^{41}$ and $y^{49}$ are in $S$. Determine if there exists a positive integer $z$ st $z^{2009}$ is in $S$.
Let $H$ be the orthocentre of $\triangle ABC$ and let $P$ be a point on the circumcircle of $\triangle ABC$, distinct from $A,B,C$. Let $E$ and $F$ be the feet of altitudes from $H$ onto $AC$ and $AB$ respectively. Let $PAQB$ and $PARC$ be parallelograms. Suppose $QA$ meets $RH$ at $X$ and $RA$ meets $QH$ at $Y$. Prove that $XE$ is parallel to $YF$.
In the plane we consider rectangles whose sides are parallel to the coordinate axes and have positive length. Such a rectangle will be called a box. Two boxes intersect if they have a common point in their interior or on their boundary. Find the largest $ n$ for which there exist $ n$ boxes $ B_1$, $ \ldots$, $ B_n$ such that $ B_i$ and $ B_j$ intersect if and only if $ i\not\equiv j\pm 1\pmod n$. Proposed by Gerhard Woeginger, Netherlands