Problem

Source: JBMO 2006

Tags: geometry, incenter



The triangle $ABC$ is isosceles with $AB=AC$, and $\angle{BAC}<60^{\circ}$. The points $D$ and $E$ are chosen on the side $AC$ such that, $EB=ED$, and $\angle{ABD}\equiv\angle{CBE}$. Denote by $O$ the intersection point between the internal bisectors of the angles $\angle{BDC}$ and $\angle{ACB}$. Compute $\angle{COD}$.