Problem

Source: Romanian IMO TST 2006, day 5, problem 4

Tags: geometry, incenter, circumcircle, parallelogram, trigonometry, geometry proposed



Let $ABC$ be an acute triangle with $AB \neq AC$. Let $D$ be the foot of the altitude from $A$ and $\omega$ the circumcircle of the triangle. Let $\omega_1$ be the circle tangent to $AD$, $BD$ and $\omega$. Let $\omega_2$ be the circle tangent to $AD$, $CD$ and $\omega$. Let $\ell$ be the interior common tangent to both $\omega_1$ and $\omega_2$, different from $AD$. Prove that $\ell$ passes through the midpoint of $BC$ if and only if $2BC = AB + AC$.