Problem

Source: Romanian JBMO TST 2006, Day 4, Problem 2

Tags: complex numbers, geometry proposed, geometry



Let $ABC$ be a triangle and $A_1$, $B_1$, $C_1$ the midpoints of the sides $BC$, $CA$ and $AB$ respectively. Prove that if $M$ is a point in the plane of the triangle such that \[ \frac{MA}{MA_1} = \frac{MB}{MB_1} = \frac{MC}{MC_1} = 2 , \] then $M$ is the centroid of the triangle.