Problem

Source: Romanian IMO TST 2006, day 3, problem 2

Tags: geometry, geometric transformation, reflection, projective geometry, circumcircle, power of a point, cyclic quadrilateral



Let $A$ be point in the exterior of the circle $\mathcal C$. Two lines passing through $A$ intersect the circle $\mathcal C$ in points $B$ and $C$ (with $B$ between $A$ and $C$) respectively in $D$ and $E$ (with $D$ between $A$ and $E$). The parallel from $D$ to $BC$ intersects the second time the circle $\mathcal C$ in $F$. Let $G$ be the second point of intersection between the circle $\mathcal C$ and the line $AF$ and $M$ the point in which the lines $AB$ and $EG$ intersect. Prove that \[ \frac 1{AM} = \frac 1{AB} + \frac 1{AC}. \]