Let $x,y,z$ be positive numbers such that \[ {1\over x}+{1\over y}+{1\over z}=1. \] Show that \[ \sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z} \]
Problem
Source: APMO 2002
Tags: inequalities
08.04.2006 08:41
shobber wrote: Let $x,y,z$ be positive numbers such that \[ {1\over x}+{1\over y}+{1\over z}=1. \] Show that \[ \sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z} \] From the condition we have $\sum xy= xyz$ $S=\sum \sqrt{x+yz} \geq \sqrt{(\sum {\sqrt{x}})^2+(\sum \sqrt{yz})^2}$ Put $u=\sum \sqrt{x}$ $v=\sum \sqrt{yz}$ $\sqrt{u^2+v^2} \geq \sqrt{xyz}+u$ $u^2+v^2 \geq xyz +u^2+2\sum \sqrt{x}\sqrt{xyz}$ $\sum xy + 2\sqrt{xyz}\sum \sqrt{x} \geq xyz +2\sqrt{xyz} \sum \sqrt{x}$ But we have $\sum xy =xyz$
07.08.2006 19:19
Isn't that just walking forwards and going backwards?
07.08.2006 19:46
Aren't those equivalences, Karth? That would make the proof valid. shobber wrote: Let $x,y,z$ be positive numbers such that \[{1\over x}+{1\over y}+{1\over z}=1.\] Show that \[\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z}\] Let $\sum = \sum_{\textrm{cyclic}}$. Square both sides to get the equivalent \[\sum (x+yz)+2\sum\sqrt{(x+yz)(y+zx)}\geq (xyz+x+y+z)+2\left(\sum (x+1)\sqrt{yz}\right)\] It's given that $xy+yz+zx=xyz$, so we just want to prove that \[\sum\sqrt{(x+yz)(y+zx)}\geq \sum (x+1)\sqrt{yz}\] But if we could prove that $\sqrt{(x+yz)(y+zx)}\geq (z+1)\sqrt{xy}$, we would be done. This inequality is equivalent with $xy+x^{2}z+y^{2}z+xyz^{2}\geq xyz^{2}+2xyz+xy$, i.e. $z(x-y)^{2}\geq 0$, which is obvious.
07.08.2006 20:00
shobber wrote: Let $x,y,z$ be positive numbers such that \[{1\over x}+{1\over y}+{1\over z}=1.\] Show that \[\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z}\] $\sum \sqrt{x+yz}= \sum \sqrt{x \frac{xyz}{xy+yz+zx}+yz}$ $=\sum \sqrt{\frac{yz}{xy+yz+zx}(x^{2}+xy+yz+zx)}$ $=\sum \sqrt{\frac{yz(x+y)(x+z)}{xy+yz+zx}}$ $=\frac{1}{\sqrt{xy+yz+zx}}\sum \sqrt{yz(x+y)(x+z)}$ $\geq \frac{1}{\sqrt{xy+yz+zx}}\sum \sqrt{yz(x+\sqrt{yz})^{2}}$ $= \frac{1}{\sqrt{xy+yz+zx}}\sum (x\sqrt{yz}+yz)$ $=\sum (\sqrt{\frac{x^{2}yz}{xy+yz+zx}}+\frac{yz}{\sqrt{xy+yz+zx}})$ $=\sum \sqrt{x}+\frac{\sum{yz}}{\sqrt{xy+yz+zx}}$ $=\sum \sqrt{x}+\sqrt{xy+yz+zx}$ $=\sum \sqrt{x}+\sqrt{xyz}$.
08.08.2006 16:20
The problem duces to $a+b+c=1$, and a problem solved by Minkowski ineq.
10.08.2006 05:33
Let $a=\frac{1}{x}$, $b=\frac{1}{y}$, $c=\frac{1}{z}$. Then, $a+b+c=1$ $\sum = \sum_{cyc}$ $LHS = \sum \sqrt{x+yz}= \sum \frac{\sqrt{bc+a}}{\sqrt{abc}}= \sum \frac{bc+a(a+b+c)}{\sqrt{abc}}= \sum \frac{\sqrt{(a+b)(a+c)}}{\sqrt{abc}}\geq \sum \frac{a+\sqrt{bc}}{\sqrt{abc}}= \sum \sqrt{xyz}(\frac{1}{x}+\frac{1}{\sqrt{yz}}) = \sqrt{xyz}\sum \frac{1}{x}+\sum \sqrt{x}= \sqrt{xyz}+\sum \sqrt{x}= RHS$ Is it the same as your Minkowski ineq? If yes then I am sorry.
28.03.2010 22:41
Does this work? PS sorry for bringing up an old topic. Solution By Cauchy-Schwarz, it follows that for any $ x,y,z > 0$, $ (x + yz)(y + xz) \ge (\sqrt {xy} + z \sqrt {xy})^2$ $ \sqrt {(x + yz)(y + xz)} \ge \sqrt {xy} + z \sqrt {xy}$ Summing this for all pairings of $ x,y,z$, it follows that $ \sqrt {(x + yz)(y + xz)} + \sqrt {(x + yz)(z + xy)} + \sqrt {(z + xy)(y + xz)} \ge \sqrt {xy} + \sqrt {xz} + \sqrt {yz} + z \sqrt {xy} + x \sqrt {yz} + y \sqrt {xz}$ Now note that by the condition, $ xy + xz + yz = xyz$. Multiplying by $ 2$ and adding $ x + y + z + xy + xz + yz = x + y + z + xyz$ gives that, $ (\sqrt {x + yz} + \sqrt {y + zx} + \sqrt {z + xy})^2 \ge (\sqrt {xyz} + \sqrt {x} + \sqrt {y} + \sqrt {z})^2$ The result follows.
01.04.2010 15:11
$ \sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z}$ $ \iff \sum_{cyc} \sqrt{\frac{1}{yz}+\frac{1}{x}} \ge 1+ \sum_{cyc} \frac{1}{\sqrt{yz}}$ $ \iff \sum_{cyc} \sqrt{(\frac{1}{x}+\frac{1}{y})(\frac{1}{x}+\frac{1}{z})} \ge 1+ \sum_{cyc} \frac{1}{\sqrt{yz}}$ (since $ (\frac{1}{x}+\frac{1}{y})(\frac{1}{x}+\frac{1}{z})=\frac{1}{yz}+\frac{1}{x}$) By C-S inequality, $ \sum_{cyc} \sqrt{(\frac{1}{x}+\frac{1}{y})(\frac{1}{x}+\frac{1}{z})} \ge \sum_{cyc}(\frac{1}{x}+\frac{1}{\sqrt{yz}} )=1+ \sum_{cyc} \frac{1}{\sqrt{yz}}$ ( since $ {1\over x}+{1\over y}+{1\over z}=1$) QED
05.07.2011 03:12
After dividing by $\sqrt{xyz}$ and making the substitution $x=\frac{1}{a}, y=\frac{1}{b}$ and $z=\frac{1}{c}$, the inequality becomes \[ \sqrt{a+bc} +\sqrt{b+ca} +\sqrt{c+ab}\geqslant 1+\sqrt{ab}+\sqrt{bc}+\sqrt{ca} \] Notice that $a+bc=(a+b)(a+c)$ and by Cauchy Schwarz $(a+b)(a+c)\geqslant (a+\sqrt{bc})^2$. Using this we have \[ \sqrt{a+bc} +\sqrt{b+ca} +\sqrt{c+ab}\geqslant a+\sqrt{bc} +b+ \sqrt{ca} +c +\sqrt{ab} \] We're done due to $a+b+c=1$.
19.04.2012 09:40
The condition gives \begin{align*} xyz = xy + xz + yz \iff yz + x = x + y + z + \frac {yz} {x} \end{align*}Furthermore, $\sqrt {xyz} = \left (\dfrac {1} {x} + \dfrac {1} {y} + \dfrac {1} {z}\right) \sqrt {xyz} = \sqrt {\dfrac {xy} {z}} + \sqrt {\dfrac {xz} {y}} + \sqrt {\dfrac {yz} {x}}$, so it suffices to show \begin{align*} \sum \sqrt {\dfrac {yz} {x} + x + y + z} \ge \sum \sqrt {\dfrac {xy} {z}} + \sum \sqrt {x} \end{align*}From AM-GM, \[\dfrac {xy} {z} + x + y + z \ge \dfrac {xy} {z} + z + 2 \sqrt {xy} \implies \sqrt {\dfrac {xy} {z} + x + y + z} \ge \sqrt {\dfrac {xy} {z}} + \sqrt {z}\]Summing cyclically gives the desired result.
04.12.2013 08:09
It's equivalent to show \[ \sum_{\text{cyc}} \sqrt{x+yz\left( \frac1x+\frac1y+\frac1z \right)} \ge \sum_{\text{cyc}} \sqrt{x} + \sqrt{xyz} \cdot \frac1x \] but now we're done by Cauchy as \[ \sqrt{x+yz\left( \frac1x+\frac1z+\frac1z \right)}= \frac{\sqrt{(x+y)(x+z)}}{\sqrt{x}} \ge \frac{x+\sqrt{yz}}{\sqrt{x}} = \sqrt x + \frac{\sqrt{xyz}}{x}. \]
04.12.2013 17:11
really a nice one.
31.12.2013 04:50
The inequality is equivalent to Let $a, b ,c$ be positive real numbers such that $a+b+c=1$ , prove that\[ \frac{a}{\sqrt{a+bc}+\sqrt{bc}}+\frac{b}{\sqrt{b+ca}+\sqrt{ca}}+\frac{c}{\sqrt{c+ab}+\sqrt{ab}}\ge 1.\] vyfukas wrote: We have that $b+c=1-a \Rightarrow 1-2a+a^2=b^2+2bc+c^2\ge 4bc \Rightarrow bc \le \dfrac{1-2a+a^2}{4}$ Then we substitute this result in a given inequality: $\dfrac{a}{\sqrt{a+bc}+\sqrt{bc}}\ge\dfrac{a}{\sqrt{a+\dfrac{1-2a+a^2}{4}}+\sqrt{\dfrac{1-2a+a^2}{4}}}=\dfrac{a}{\dfrac{a+1}{2}+\dfrac{1-a}{2}}=a$ Then adding similar inequalities we will get $a+b+c=1$ thus we are done. http://www.artofproblemsolving.com/Forum/viewtopic.php?f=52&t=568982
20.02.2016 15:32
Since $xyz=xy+yz+zx$ we see that the individual terms on the RHS and LHS are equal when squared.So after squaring the ineq,it is sufficient to prove $$\sum \sqrt{(x+yz)(y+xz)} \ge \sum \sqrt{xy} +\sum z\sqrt{xy}$$which is Cauchy schwarz in 'most normal form'
20.02.2016 15:50
kapilpavase wrote: Since $xyz=xy+yz+zx$ we see that the individual terms on the RHS and LHS are equal when squared.So after squaring the ineq,it is sufficient to prove $$\sum \sqrt{(x+yz)(y+xz)} \ge \sum \sqrt{xy} +\sum z\sqrt{xy}$$which is Cauchy schwarz in 'most normal form' I am afraid, your solution is not different enough from post #8 to bring up such an old topic.
21.02.2016 03:48
shobber wrote: Let $x,y,z$ be positive numbers such that ${1\over x}+{1\over y}+{1\over z}=1.$ Show that \[ \sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z} \] http://www.artofproblemsolving.com/community/c6h568982p3338102 Let $x,y,z$ be positive numbers such that $x+ y+ z=1.$ Show that \[ \sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z} \]Stronger than APMO 2002
21.02.2016 07:32
http://www.artofproblemsolving.com/community/c6h133953p758077 If $ x$, $ y$, $ z$ are three nonnegative reals, then prove that$$ \sum_{\text{cyc}}\sqrt {\left(z + x\right)\left(x + y\right)}\geq x + y + z + \sqrt3\cdot\sqrt {yz + zx + xy}$$http://www.artofproblemsolving.com/community/c6h200514p1102800 Prove if $a,b,c>0$ and $ab+bc+ca=3$ then $$ \sum\sqrt{a^2+3}\geq a+b+c+3$$
04.04.2017 00:46
06.02.2018 15:39
Homogenise the inequality to $$ \sum_\text{cyc} \sqrt{\frac{(x+y)(x+z)}{x}} \ge \sum_\text{cyc} \sqrt{x} + \sqrt{\frac{yz}{x}}$$We show that $\sqrt{\frac{(x+y)(x+z)}{x}} \ge \sqrt{x} + \sqrt{\frac{yz}{x}}$. Upon squaring and expanding, it reduces to $y+z \ge 2\sqrt{yz}$ which is obvious by AM-GM.
06.02.2018 15:59
WizardMath wrote: We show that $\sqrt{\frac{(x+y)(x+z)}{x}} \ge \sqrt{x} + \sqrt{\frac{yz}{x}}$. This is true by Cauchy, no need to square both the sides
06.02.2018 17:18
Yeah very true. Wizard math nice. Solution. In inequality expansion and getting is great
08.03.2019 16:09
Karamata inequality can kill this problem immediately.
17.12.2019 15:37
Let $ a,b,c>0 $ and $ \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1 $ . Prove that $$\sqrt{\frac{a-1}{b}}+\sqrt{\frac{b-1}{c}}+\sqrt{\frac{c-1}{a}} \ge \sqrt{6}$$$$\iff$$$$a\sqrt{1+\frac{c}{b}}+b\sqrt{1+\frac{a}{c}}+c\sqrt{1+\frac{b}{a}} \ge \sqrt{6(ab+bc+ca)}$$h
10.01.2022 15:42
a different solution: $$\sum \sqrt{x+yz} \geq \sqrt{xyz} +\sum \sqrt{x} \Leftrightarrow \sum \frac{yz}{\sqrt{x+yz}+\sqrt x} =\sum \sqrt{x+yz}-\sqrt{x}\geq\sqrt{xyz}$$which is correct because: $$\sum \frac{yz}{\sqrt{x+yz}+\sqrt x}=\sum \frac{yz}{\sqrt{x+yz(\frac 1x +\frac 1y +\frac 1z)}+\sqrt x}=\sqrt{xyz}\sum \frac{yz}{\sqrt{(xz+yz)(xy+zy)}+ x\sqrt{yz}}\geq \sqrt{xyz}\sum \frac{yz}{\frac{xz+yz +xy +yz}{2} +\frac{xy+xz}{2}}=\sqrt{xyz}$$
10.01.2022 16:05
Let $x,y,z$ be positive numbers such that $\frac{1}{x}+\frac{2}{yz}=1.$ Show that $$\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\geq\frac{3\sqrt{3}}{5}(\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z} )$$
05.05.2022 11:04
Note that $\sqrt{xyz} = \sqrt{\frac{yz}{x}} + \sqrt{\frac{zx}{y}} + \sqrt{\frac{xy}{z}}$. Now Note that we need to prove $\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy} \ge \sqrt{\frac{yz}{x}} + \sqrt{\frac{zx}{y}} + \sqrt{\frac{xy}{z}}+\sqrt{x}+\sqrt{y} + \sqrt{z}$ so we will prove $\sqrt{x+yz} \ge \sqrt{\frac{yz}{x}} + \sqrt{x}$ or $x + yz \ge \frac{yz}{x} + x + 2\sqrt{yz}$. Note that $\frac{yz+zx+xy}{xyz} = 1 \implies yz = xyz - zx- xy \implies \frac{yz}{x} = zy - z - y$ so we need to prove $y + z \ge 2\sqrt{yz}$ which is obviously true.
06.03.2023 23:23
The condition is equivalent to $xyz=xy+yz+zx$. We'll use this to homogenize the left-hand side of the inequality: \[\sqrt{xyz}\sum\limits_{sym} \sqrt{x+yz}=\sum\limits_{sym} \sqrt{x\cdot xyz+yz\cdot (xy+yz+zx)}=\sum\limits_{sym}\sqrt{yz}\cdot \sqrt{(x+y)(x+z)}\]Now note that using the Cauchy-Schwarz inequality, we have that: \[\sqrt{xyz}\sum\limits_{sym} \sqrt{x+yz}=\sum\limits_{sym}\sqrt{yz}\cdot \sqrt{(x+y)(x+z)}\geq \sum\limits_{sym}\sqrt{yz}\cdot (x+\sqrt{yz})=\sqrt{xyz}\sum\limits_{sym} \sqrt{x}+xyz\sum\limits_{sym} \frac{1}{x}=\sqrt{xyz}\sum\limits_{sym} \sqrt{x}+xyz\]which is equivalent to the original inequality after diving both sides by $\sqrt{xyz}>0$.
08.06.2023 11:44
shobber wrote: Let $x,y,z$ be positive numbers such that $ {1\over x}+{1\over y}+{1\over z}=1. $ Show that \[ \sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z} \]
Attachments:

19.08.2023 03:22
shobber wrote: Let $x,y,z$ be positive numbers such that \[ {1\over x}+{1\over y}+{1\over z}=1. \]Show that \[ \sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z} \] $\color{blue}\boxed{\textbf{Proof:}}$ $\color{blue}\rule{24cm}{0.3pt}$ $${1\over x}+{1\over y}+{1\over z}=1$$$$\Rightarrow xy+yz+zx=xyz...(i)$$$$\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z}$$$$\Leftrightarrow x+yz+y+zx+z+xy+2\sum_{cyc} \sqrt{xy+x^2z+y^2z+xyz^2}\ge xyz+x+y+z+2\sum_{cyc}\sqrt{x^2yz}+\sqrt{xy}$$By $(i):$ $$\Leftrightarrow \sum_{cyc}\sqrt{(x+yz)(y+xz)}\ge \sum_{cyc}\sqrt{xyz^2}+\sqrt{xy}$$It is enough to prove that: $$\sqrt{(x+yz)(y+xz)}\ge \sqrt{xyz^2}+\sqrt{xy}$$$$\Leftrightarrow xy+x^2z+y^2z+xyz^2\ge xyz^2+xy+2\sqrt{x^2y^2z^2}$$$$\Leftrightarrow (x^2+y^2)\ge 2xy$$which is trivial by $AM-GM$ $$\Rightarrow \sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z}_\blacksquare$$$\color{blue}\rule{24cm}{0.3pt}$