Suppose that $a, b, c > 0$ such that $abc = 1$. Prove that \[ \frac{ab}{ab + a^5 + b^5} + \frac{bc}{bc + b^5 + c^5} + \frac{ca}{ca + c^5 + a^5} \leq 1. \]
Problem
Source: IMO 1996 Shortlist
Tags: inequalities, three variable inequality, algebra, IMO Shortlist
15.09.2003 18:36
I think so. The solution without typos : Note that $a^5 + b^5 \geq a^3b^2 + a^2b^3$ by Muirhead, rearrangement, AM - GM, ... so \begin{eqnarray*} \sum \frac{ab}{a^5 + b^5 + ab} &\leq& \sum \frac{ab}{a^3b^2 + a^2b^3 + ab} \\ \ &=& \sum \frac{1}{a^2b + ab^2 + 1} \\ \ &=& \sum \frac{abc}{a^2b + ab^2 + abc } \\ \ &=& \sum \frac{c}{a + b + c} \\ \ &=& 1. \end{eqnarray*} We're done !
22.07.2004 21:21
One can easily show that $ x^5 + y^5 \geq x^2 y^3 + x^3 y^2$ for every x, y positive $ ab/(a^5+b^5+ab) \leq ab/(a^2 b^3 +a^3 b^2+ab) = 1/(a b^2+a^2 b+1) = 1/[ab(a+b+c)] =c/(a+b+c)$ since $ abc =1$ Similarly $ bc/(b^5+c^5+bc) \leq a/(a+b+c)$ and $ ca/(c^5+a^5+ca)\leq b/(a+b+c)$ By adding those three inequalities we get the result we are looking for. Cute no?
06.12.2008 21:46
$ \frac {xy}{x^5 + y^5 + xy} = \frac {xyz}{x^5z + y^5z + xyz} = \frac {1}{x^5z + y^5z + 1}$ Now, $ \frac {1}{a+1} + \frac {1}{b+1} + \frac {1}{c+1} \implies a + b + c + 2 \le abc$ Thus, we have to show $ 2 + \sum {x^5y} = x^5y + x^5z + y^5x + y^5z + z^5x + z^5y + 2 \le (x^5 + y^5)(y^5 + z^5)(x^5 + z^5) = 2 + \sum {x^{10}y^5}$ But $ \sum{x^5y} = \sum{x^8y^4z^3}$, and we have Muirhead.
13.04.2012 00:33
After homogenizing by turning the $ab$ terms into $a^2b^2c$ and etc and multiplying by 2, straight-up expansion gives the LHS to be $[11,2,2]+4[8,4,3]+[7,7,1]+2[7,6,2]+[5,5,5]$ and the RHS to be $[11,2,2]+2[10,5,0]+[7,7,1]+2[7,6,2]+2[8,4,3]+[5,5,5]$ Subtracting gives $RHS-LHS=2[10,5,0]-2[8,4,3]$ but $[10,5,0] \geq [8,4,3]$ by Muirhead so we're done.
29.09.2012 11:21
1998,I proof: Suppose that $a, b, c > 0$ such that $abc = 1$ , $n$ be positive integer. Prove that \[ \frac{a^{n-1}b^{n-1}}{a^{n-1}b^{n-1} + a^{2n+1} + b^{2n+1}} + \frac{b^{n-1}c^{n-1}}{b^{n-1}c^{n-1} + b^{2n+1} + c^{2n+1}} \[\\ + \frac{c^{n-1}a^{n-1}}{c^{n-1}a^{n-1} + c^{2n+1} + a^{2n+1}} \leq 1. \] Another generalization : Let $a,b,c $ be positive real numbers such that $abc=1 ,n\le-1 $ or $ n\ge2 ,$ Show that\[\frac{bc}{b^n+c^n+bc}+\frac{ca}{c^n+a^n+ca}+\frac{ab}{a^n+b^n+ab}\le1\] http://www.artofproblemsolving.com/Forum/viewtopic.php?f=51&p=2835835 Similarly have Let $a,b,c>0 $ such that $abc=1 ,n\ge1 $ or $ n\le-2 ,$ Show that \[\frac{a^n}{a^n+b+c}+\frac{b^n}{b^n+c+a}+\frac{c^n}{c^n+a+b}\ge1\] http://www.artofproblemsolving.com/Forum/viewtopic.php?f=51&p=2724850#p2724850
09.06.2013 08:55
Arne wrote: Suppose that $a, b, c > 0$ such that $abc = 1$. Prove that \[ \frac{ab}{ab + a^5 + b^5} + \frac{bc}{bc + b^5 + c^5} + \frac{ca}{ca + c^5 + a^5} \leq 1. \] $a^5+b^5 = \frac{a^5}{5}+\frac{a^5}{5}+\frac{a^5}{5}+\frac{b^5}{5}+\frac{b^5}{5}+\frac{a^5}+{5}\frac{a^5}{5}+\frac{b^5}{5}+\frac{b^5}{5}\frac{b^5}{5} \ge a^3b^2+a^2b^3 $ Now , $\sum \frac{ab}{ab + a^5 + b^5} \le \sum \frac{1}{a^2b+ab^2+1} \le \sum \frac{abc}{ab(a+b+c} \le \sum \frac{c}{a+b+c)} = 1 \Box$
27.06.2014 15:19
Notice that we can rewrite given $LHS$ as \[\sum_{cyc}{\frac{ab}{ab+a^5+b^5}}=\sum_{cyc}{\frac{1}{1+a^5c+b^5c}}.\] Then using supstiution $a=\frac{x}{y},b=\frac{y}{z},c=\frac{z}{x}$ we get \[\sum_{cyc}{\frac{1}{1+a^5c+b^5c}}=\sum_{cyc}\frac{1}{1+\frac{x^4z}{y^5}+\frac{y^5}{z^4x}}\leq \sum_{cyc}\frac{1}{2\cdot \sqrt\frac{x^3}{z^3}+1}\] which we got by $AM-GM$. Then we have \[\sum_{cyc}\frac{1}{2\cdot \sqrt\frac{x^3}{z^3}+1}\leq\sum_{cyc}\frac{1}{2\cdot \sqrt\frac{x^3}{x^3}+1}=\sum_{cyc}\frac{1}{2+1}=\frac{1}{3}\cdot 3=1.\]Thats true because of rearrangement. $Q.E.D.$
31.03.2015 02:34
@above: I don't see how you applied rearrangment in the final line. Also many solutions here use $a^5+b^5 \ge a^3b^2+b^2a^3$ (*). I have seen some times before the trick where you reduce an inequality to cylcic sum of $a/(a+b+c)$ equals 1, and if you have this trick in mind then it is quite easy to find that you need to prove (*), and then the problem is solved. But it seems to me a very unnatural thing to think of the trick first, and to me its not obvious at all that the trick is applicable here at first, so it does not come to mind. My question is then: how did you think to use this inequality (*)?
31.03.2015 03:11
Given $x_1, x_2, x_3,....,x_{2015} >0$ and $x_1+x_2+x_3+....+x_{2015}=1$. Find minimum value of $P=(1+x_1^2)(1+x_2^2)(1+x_3^2)...(1+x_{2015}^2)$
31.03.2015 06:38
@above: your post has nothing do with the problem in this thread. you should remove it i think.
16.02.2016 03:51
Mewto55555 wrote: After homogenizing by turning the $ab$ terms into $a^2b^2c$ and etc and multiplying by 2, straight-up expansion gives the LHS to be $[11,2,2]+4[8,4,3]+[7,7,1]+2[7,6,2]+[5,5,5]$ and the RHS to be $[11,2,2]+2[10,5,0]+[7,7,1]+2[7,6,2]+2[8,4,3]+[5,5,5]$ Subtracting gives $RHS-LHS=2[10,5,0]-2[8,4,3]$ but $[10,5,0] \geq [8,4,3]$ by Muirhead so we're done. I don't know what he mean by $[11,2,2]+4[8,4,3]+[7,7,1]+2[7,6,2]+[5,5,5]$ and $[11,2,2]+2[10,5,0]+[7,7,1]+2[7,6,2]+2[8,4,3]+[5,5,5]$ Can someone explain ?
01.08.2017 04:16
velraman wrote: Mewto55555 wrote: After homogenizing by turning the $ab$ terms into $a^2b^2c$ and etc and multiplying by 2, straight-up expansion gives the LHS to be $[11,2,2]+4[8,4,3]+[7,7,1]+2[7,6,2]+[5,5,5]$ and the RHS to be $[11,2,2]+2[10,5,0]+[7,7,1]+2[7,6,2]+2[8,4,3]+[5,5,5]$ Subtracting gives $RHS-LHS=2[10,5,0]-2[8,4,3]$ but $[10,5,0] \geq [8,4,3]$ by Muirhead so we're done. I don't know what he mean by $[11,2,2]+4[8,4,3]+[7,7,1]+2[7,6,2]+[5,5,5]$ and $[11,2,2]+2[10,5,0]+[7,7,1]+2[7,6,2]+2[8,4,3]+[5,5,5]$ Can someone explain ? He is probably referring to the coefficients, and the ordered triplet represents the powers of a,b, and c respectively.
04.07.2018 17:54
My Solution : Observe that $(x^3-y^3)(x^2-y^2) \ge 0 \implies x^5 + y^5 \ge x^2y^2(x+y) \ \forall x,y \in \mathbb{R^+}$. Thus, $\sum_{cyc} \dfrac {ab}{a^5+b^5+ab} \le \sum_{cyc} \dfrac{ab}{a^2b^2(a+b)+ab} = \sum_{cyc} \dfrac{c}{a+b+c} = 1$.
04.07.2018 18:43
\[(ab+a^5+b^5)\left(\frac{c^4}{ab} + \frac1a + \frac1b\right)\ge (a^2+b^2 + c^2)^2\]\[\iff \frac{ab}{ab+a^5+b^5} \le \frac{c^4 + a + b}{(a^2 + b^2 + c^2)^2}\]Summing up similar inequalities. \[\text{LHS} \le \frac{\sum a^4 +2\sum a }{(a^2 + b^2 + c^2)^2}\]So, it suffices to prove that \begin{align*} \frac{\sum a^4 +2\sum a }{(a^2 + b^2 + c^2)^2}&\le 1\\ \iff a^2b^2 + b^2c^2 + c^2a^2 &\ge a + b + c\\ &= abc(a+b+c)\\ \iff \sum a^2(b-c)^2 &\ge 0 \end{align*}
04.07.2018 19:25
Nice one Vrangr
29.04.2019 15:58
observe that $$x^{5}+y^{5} = (x+y)(x^{4}-x^{3}y+x^{2}y^{2}-xy^{3}+y^{4})$$$$=(x+y)(x^{3}(x-y) -y^{3}(x-y) +x^{2}y^{2}) = (x+y)((x-y)^{2}(x^{2}+y^{2}+xy)+x^{2}y^{2})\ge (x+y)(x^{2}y^{2})$$since $(x-y)^{2}\ge0$ $$\Rightarrow \sum_{cyc}\frac{xy}{x^{5}+y^{5}+xy}\le \sum\frac{xy}{(x+y)(x^{2}y^{2})+xy}= \sum\frac{1}{(x+y)xy+1}$$$$=\sum\frac{xyz}{(x+y)xy+xyz}= \sum\frac{z}{x+y+z}=1$$And we are done!
23.02.2020 11:32
Arne wrote: Suppose that $a, b, c > 0$ such that $abc = 1$. Prove that \[ \frac{ab}{ab + a^5 + b^5} + \frac{bc}{bc + b^5 + c^5} + \frac{ca}{ca + c^5 + a^5} \leq 1. \] $$\sum\frac{ab}{ab+a^5+b^5}=\sum\frac{a^2b^2c}{a^2b^2c+a^5+b^5}\leq\sum\frac{a^2b^2c}{a^2b^2c+a^3b^2+a^2b^3}=\sum\frac{c}{a+b+c}=1$$
13.04.2020 21:40
Observe that (By Muirhead) $a^5+b^5\ge a^2b^2(a+b)$. We have \begin{align*} \sum_{cyc}\frac{ab}{a^5+ab+b^5}&\le\sum_{cyc}\frac{ab}{a^2b^2(a+b)+ab} \\ &=\sum_{cyc}\frac1{ab(a+b)+1} \\ &=\sum_{cyc}\frac1{ab(a+b)+abc} \\ &=\sum_{cyc}\frac{1}{ab(a+b+c)} \\ &=\sum_{cyc}\frac c{a+b+c} \\ &=1 \end{align*} Very similar to a problem from USAMO 1998.
22.04.2020 04:33
Arne wrote: Suppose that $a, b, c > 0$ such that $abc = 1$. Prove that \[ \frac{ab}{ab + a^5 + b^5} + \frac{bc}{bc + b^5 + c^5} + \frac{ca}{ca + c^5 + a^5} \leq 1. \] Let $a,b,c>0$ with $abc=1.$ Establish that $$\frac{1}{a^5+b^5+1}+\frac{1}{b^5+c^5+1}+\frac{1}{c^5+a^5+1}\leq 1.$$$$\iff$$$$\frac{1}{a^3+b^3+1} +\frac{1}{b^3+c^3+1} +\frac{1}{c^3+a^3+1} \leq 1$$h h h
17.05.2020 19:25
By Muirhead’s inequality, $b^5 + c^5 \ge b^3c^2 + b^2c^3$. Hence, $$\sum_{cyc} \frac{ab}{ab+a^5+b^5} \le \sum_{cyc} \frac{ab}{ab+a^3b^2 + a^2b^3} = \sum_{cyc} \frac{1}{1+a^2b+b^2a} = \sum_{cyc} \frac{c}{c+a+b} = 1$$as desired.
29.06.2020 15:50
levinhkiet wrote: Given $x_1, x_2, x_3,....,x_{2015} >0$ and $x_1+x_2+x_3+....+x_{2015}=1$. Find minimum value of $P=(1+x_1^2)(1+x_2^2)(1+x_3^2)...(1+x_{2015}^2)$ easy the answer is $\frac{2016}{2015}$
07.07.2020 01:07
WLOG let $a$$\leq$$ b$$ \leq c$. So we have, from rearrangement inequality, $\begin{bmatrix} a^3 & b^3 \\ a^2 & b^2 \end{bmatrix} \geq \begin{bmatrix} a^3 & b^3 \\ b^2 & a^3 \end{bmatrix}$. Which in turn gives , $a^5+b^5 \geq a^{3}b^{2} + a^{2}b^{3} $ $\frac {ab}{a^5+b^5 +ab} $$\leq$$ \frac {ab}{ a^{3}b^{2} + a^{2}b^{3}+ab}$ Then it follows
10.04.2021 14:45
Note that $\frac{xy}{x^5+ xy+y^5}=\frac{1}{z(x^5+y^5)+1} \leq \frac{1}{z(x^4y+xy^4)+1}=\frac{1}{(x^3+y^3+1)} \leq \frac{1}{xy(x+y)+1}=\frac{z}{x+y+z}$ and the result follows by summing this cyclically $\Box$
10.04.2021 14:53
$a^5+b^5\ge a^4b+ab^4$ and $a^3+b^3\ge a^2b+ab^2$ are direct by Rearrangement, so we have: $\sum_{\text{cyc}}\frac{ab}{ab+a^5+b^5}\le\sum_{\text{cyc}}\frac1{1+a^3+b^3}\le\sum_{\text{cyc}}\frac c{c+a^2bc+ab^2c}=\sum_{\text{cyc}}\frac a{a+b+c}=1$
25.07.2021 03:47
For positive reals $x,y,z$ with $xyz=1$, prove or disprove that: $$\frac1{x+y+1}+\frac1{y+z+1}+\frac1{z+x+1}\le1.$$
13.08.2021 17:59
The classic Muirhead for denominator inequalities! We have that $\sum_{\text{cyc}} \frac{ab}{ab+a^5+b^5}\leq \sum_{\text{cyc}} \frac{ab}{ab+a^3b^2+a^2b^3} = \sum_{\text{cyc}} \frac{1}{abc+a^2b+ab^2}=\frac{a+b+c}{a+b+c}=1.$ Remarks: In the beginning, I tried to use AM-GM directly on the denominator to get that I wanted to show that $\sum_{cyc} \frac{1}{ab}\leq 3\implies a+b+c\leq 3,$ but obviously the inequality was too weak.
04.09.2021 20:06
\begin{align*} \sum_{\text{cyc}} \dfrac{ab}{{\color{red}a^5+b^5}+ab} &\le \sum_{\text{cyc}} \dfrac{ab}{{\color{blue}a^3b^2 + a^2b^3} + ab} \\ &= \sum_{\text{cyc}} \frac{ab}{ab(a^2b + ab^2 + {\color{red}1})}\\ &= \sum_{\text{cyc}} \frac{1}{a^2b + ab^2 + {\color{blue}abc}} \\ &= \sum_{\text{cyc}} \frac{1}{{\color{red}ab}(a+b+c)} \\ &= \sum_{\text{cyc}} \frac{\color{blue}c}{a+b+c}\\ &= 1 \end{align*}
20.01.2022 08:26
By Muirhead's Theorem: $a^5+b^5 \geq a^2b^3+a^3b^2$ $\sum_{\text{cyc}} \frac{ab}{a^5+b^5+ab}\leq \sum_{\text{cyc}} \frac{ab}{a^3b^2+a^2b^3+ab} = \sum_{\text{cyc}} \frac{1}{a^2b+ab^2+1}=\sum_{\text{cyc}}\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1$.$\blacksquare$
20.01.2022 10:40
Suppose that $a, b, c > 0$ such that $abc = 1$. Prove that$$\frac{ab}{2ab + a^5 + b^5} + \frac{bc}{2bc + b^5 + c^5} + \frac{ca}{2ca + c^5 + a^5} \leq \frac{3}{4}$$$$\frac{ab}{ab + 2a^5 + b^5} + \frac{bc}{bc +2b^5 + c^5} + \frac{ca}{ca + 2c^5 + a^5} \leq \frac{3}{4}$$$$ \frac{ab}{kab + a^5 + b^5} + \frac{bc}{kbc + b^5 + c^5} + \frac{ca}{kca + c^5 + a^5}\leq \frac{3}{k+2}$$Where $k\geq 1.$
16.03.2022 23:38
Arne wrote: Suppose that $a, b, c > 0$ such that $abc = 1$. Prove that \[ \frac{ab}{ab + a^5 + b^5} + \frac{bc}{bc + b^5 + c^5} + \frac{ca}{ca + c^5 + a^5} \leq 1. \] $(a^3-b^3)(a^2-b^2) \geq 0 \implies a^5+b^5 \geq a^2b^2(a+b),$ equality when $a=b$. So, $\frac{ab}{a^5+b^5+ab} \leq \frac{ab}{a^2b^2(a+b)+ab} = \frac{1}{ab(a+b)+1} =\frac{abc}{ab(a+b+c)} =\frac{c}{a+b+c}.$ Similarly, $\frac{bc}{b^5+c^5+bc} \leq \frac{a}{a+b+c}$ and $\frac{ca}{c^5+a^5+ca} \leq \frac{b}{a+b+c},$ equality when $a=b=c=1.$ The claim follows adding these three. $\square$
02.05.2022 02:55
Same as above solutions; posting for storage. By Muirhead, $a^5+b^5\ge a^3b^2+b^3a^2.$ Hence, $$\sum_{\text{cyc}}\frac{ab}{ab+a^5+b^5}\le\sum_{\text{cyc}}\frac{ab}{ab+a^3b^2+b^3a^2}=\sum_{\text{cyc}}\frac{1}{\frac{a}{c}+\frac{b}{c}+\frac{c}{c}}=\sum_{\text{cyc}}\frac{c}{a+b+c}=1.$$$\square$
14.05.2022 20:19
Every solution is going to look the same I guess. We first show that $a^5+b^5 \ge a^3b^2++b^3a^2$. This will be just expanding and applying AM-GM inequality. \begin{align*} a^5+b^5 = (a+b)(a^4-a^3b+a^2b^2-ab^3+b^4) \ge (a+b)(2a^2b^2+a^2b^2-ab(a^2+b^2)) \ge (a+b)(3a^2b^2-2a^2b^2) = a^3b^2+b^3a^2 \end{align*}Returning to the problem: \begin{align*} \sum_{\text{cyc}}\frac{ab}{ab+a^5+b^5} = \sum_{\text{cyc}}\frac{1}{1+c(a^5+b^5)} \le \sum_{\text{cyc}}\frac{1}{1+c \cdot a^2b^2(a+b)} = \sum_{\text{cyc}}\frac{1}{1+ab(a+b)} = \sum_{\text{cyc}}\frac{c}{a+b+c} =1 \end{align*}which means we are done. $\blacksquare$
05.08.2022 11:03
jasperE3 wrote: For positive reals $x,y,z$ with $xyz=1$, prove or disprove that: $$\frac1{x+y+1}+\frac1{y+z+1}+\frac1{z+x+1}\le1.$$ Interesting. You can easily prove this result is true from straight-up expansion and then Muirhead. Note that this is actually equivalent to the original problem. From the substitution $x=a^5b$, $y=b^5c$, etc, the LHS turns into $\sum_{cyc}{\frac{1}{ab^5 + bc^5 + 1}}$, and dividing both top and bottom by $abc=1$ gives the original inequality. I would be curious to see if anyone has a solution from Holder's/Cauchy's/Titu's (from $\sum_{cyc}{\frac{a^5+b^5}{ab+a^5+b^5}} \ge 2$.) I tried but didn't get anywhere.
10.09.2023 20:25
By Power-Mean Inequality, we obtain $$\sqrt[5]{\frac{a^5+b^5}{2}} \geq \frac{a+b}{2}$$\begin{align*} \implies \frac{a^5+b^5}{2} &\geq \left(\frac{a+b}{2}\right)^5 \\ &\geq \left(\frac{a+b}{2}\right)^4 \cdot \frac{a+b}{2} \\ & \geq a^2b^2\left(\frac{a+b}{2}\right) \text{[using AM-GM]}\\ \end{align*}$$\therefore \boxed{a^5+b^5\geq a^2b^2(a+b)}.$$ Hence, \begin{align*} \sum_{cyc} {\frac{ab}{a^5+b^5+ab}} &\leq \sum_{cyc} {\frac{ab}{a^2b^2(a+b)+ab}} \\ &= \sum_{cyc} {\frac{1}{ab(a+b)+1}} \\ &= \sum_{cyc} {\frac{c}{a+b+c}} \text{[using $abc=1$]} \\ &= 1. \end{align*}$QED.$
17.09.2023 23:02
Solved with CT17. Notice that $(b^3-c^3)(b^2-c^2) \ge 0 \implies b^5+c^5 \ge b^3c^2+b^2c^3$, so we have \[\sum_\text{cyc} \frac{bc}{bc+b^5+c^5} \le \sum_\text{cyc} \frac{bc}{bc+b^3c^2+b^2c^3}=\sum_\text{cyc} \frac{\frac{1}{a}}{\frac{1}{a}+\frac{b}{a^2}+\frac{c}{a^2}}=\sum_\text{cyc} \frac{a}{a+b+c}=1,\]as desired. $\square$
24.10.2023 17:57
Version 1 Let $a,b,c$ be positive reals such that $abc=2$. Then prove that $$\sum_{cyc}{\dfrac{a^2b^2}{2\left(a^2b^2\right)+a^{7}+b^{7}}}\leq \dfrac{1}{2}$$
24.10.2023 17:59
Generalization 1 Let $a,b,c$ be positive reals such that $abc=k$. Then prove that $$\sum_{cyc}{\dfrac{(ab)^{n}}{k\left(ab\right)^{n}+a^{2n+3}+b^{2n+3}}}\leq \dfrac{1}{k}$$
26.03.2024 10:58
From rearrangement inequality, we have: $a^5+b^5\geq a^3b^2+a^2b^3 \implies a^5+b^5\geq a^2b^2(a+b)$ $$\implies \sum_{cyc} {\frac{ab}{a^5+b^5+ab}} \leq \sum_{cyc} {\frac{ab}{a^2b^2(a+b)+ab}}$$$$\implies \sum_{cyc} {\frac{ab}{a^5+b^5+ab}} \leq \sum_{cyc} {\frac{1}{ab(a+b)+1}}$$$$\implies \sum_{cyc} {\frac{ab}{a^5+b^5+ab}} \leq \sum_{cyc} {\frac{abc}{ab(a+b)+abc}}$$$$\implies \sum_{cyc} {\frac{ab}{a^5+b^5+ab}} \leq \sum_{cyc} {\frac{c}{a+b+c}}$$$$\implies \boxed{\sum_{cyc} {\frac{ab}{a^5+b^5+ab}} \leq 1}$$
28.04.2024 17:06
Done
28.05.2024 02:01
sqing wrote: Suppose that $a, b, c > 0$ such that $abc = 1$. Prove that $$ \frac{ab}{kab + a^5 + b^5} + \frac{bc}{kbc + b^5 + c^5} + \frac{ca}{kca + c^5 + a^5}\leq \frac{3}{k+2}$$Where $k\geq 1.$ Solution. Since $$x^5+y^5\ge x^2y^2(x+y)\,\,\forall x,y\in\mathbb{R}^+,$$using the assumption $abc=1$ we get that \begin{align*} & \frac{ab}{kab + a^5 + b^5} + \frac{bc}{kbc + b^5 + c^5} + \frac{ca}{kca + c^5 + a^5}\\ \le&\frac{ab}{kab + a^2 b^2(a+b)} + \frac{bc}{kbc + b^2c^2(b+c)} + \frac{ca}{kca + c^2a^(c+a)}\\ =&\frac{c}{kc + a+ b} + \frac{a}{ka + b+ c} + \frac{b}{kb + c+ a}. \end{align*}It remains to show that $$\frac{c}{kc + a+ b} + \frac{a}{ka + b+ c} + \frac{b}{kb + c+ a}\le\frac{3}{k+2},$$which is equivalent to $\left(\because k\ge1\right)$ $$3-\frac{(k-1)c}{kc + a+ b} - \frac{(k-1)a}{ka + b+ c} - \frac{(k-1)b}{kb + c+ a}\ge\frac{9}{k+2},$$namely, to show $$\frac{a+b+c}{kc + a+ b}+\frac{a+b+c}{ka + b+ c} +\frac{a+b+c}{kb + c+ a}\ge\frac{9}{k+2}.$$But the last inequality follows immediately from Cauchy-Schwartz’s inequality. $\blacksquare$
28.05.2024 12:02
19.10.2024 06:29
Notice that: $$\frac{4}{5}a^5 + \frac{1}{5} b^5 \ge a^4 b, \frac{1}{5}a^5 + \frac{4}{5} b^5 \ge a b^5$$Adding them gives $a^5+b^5 \ge a^4 b + ab^4$ (Essentially we use AM-GM, patching up Muir-head inequality ). Using this inequality, we have: $$\sum_{cyc} \frac{ab}{a^5+b^5+ab} \le \sum_{cyc} \frac{1}{a^3+b^3+1}$$ Notice that: $$\frac{2}{3} a^3 + \frac{1}{3} b^3 \ge a^2 b, \frac{1}{3} a^3 + \frac{2}{3} b^3 \ge a b^2$$Adding them gives: $a^3+b^3 \ge ab(a+b)$. Using this inequality, we have: $$\sum_{cyc} \frac{1}{a^3+b^3+1} = \sum_{cyc} \frac{abc}{a^3+b^3+abc} \le \sum_{cyc} \frac{abc}{ab(a+b+c)} = \sum_{cyc} \frac{a}{(a+b+c)} = 1.$$