Let $a$ , $b$ , $c$ be positive real numbers such that $abc=1$ . Show that : \[\frac{1}{a^3+bc}+\frac{1}{b^3+ca}+\frac{1}{c^3+ab} \leq \frac{ \left (ab+bc+ca \right )^2 }{6}\]
Problem
Source: JBMO Shortlist 2012 A2
Tags: inequalities, inequalities proposed
04.02.2015 17:24
ComplexPhi wrote: Let $a$ , $b$ , $c$ be positive real numbers such that $abc=1$ . Show that : \[\frac{1}{a^3+bc}+\frac{1}{b^3+ca}+\frac{1}{c^3+ab} \leq \frac{ \left (ab+bc+ca \right )^2 }{6}\] hello, it can be proved by BW. Sonnhard.
04.02.2015 17:27
Dr Sonnhard Graubner wrote: ComplexPhi wrote: Let $a$ , $b$ , $c$ be positive real numbers such that $abc=1$ . Show that : \[\frac{1}{a^3+bc}+\frac{1}{b^3+ca}+\frac{1}{c^3+ab} \leq \frac{ \left (ab+bc+ca \right )^2 }{6}\] hello, it can be proved by BW. Sonnhard. Can you post your full solution please?
04.02.2015 17:40
By AM-GM, $a^3+bc\ge 2a$. We want to show that \[\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le \frac{(ab+bc+ca)^2}{3}\iff ab+bc+ca\le \frac{(ab+bc+ca)^2}{3}\iff \]\[\iff 3\le ab+bc+ca,\]which is true by AM-GM.
04.02.2015 18:04
ComplexPhi wrote: Let $a$ , $b$ , $c$ be positive real numbers such that $abc=1$ . Show that : \[\frac{1}{a^3+bc}+\frac{1}{b^3+ca}+\frac{1}{c^3+ab} \leq \frac{ \left (ab+bc+ca \right )^2 }{6}\] The following inequality is also true. Let $a$, $b$ and $c$ be positive numbers such that $abc=1$. Prove that: \[\frac{1}{3a^3+bc}+\frac{1}{3b^3+ca}+\frac{1}{3c^3+ab} \leq \frac{ \left (ab+bc+ca \right )^2 }{12}\]
05.02.2015 23:37
Using the fact that $\frac{1}{a^3+bc} \leq \frac{1}{2a} = \frac{bc}{2}$ and $\sum ab =\sum \frac{1}{a}$ , we only have to prove that $3(\sum \frac{1}{a} ) \leq ( \sum \frac{1}{a} )^{2} <==> \sum \frac{1}{a} \geq 3 $ wich follows directly from am-gm since $abc=1$
03.08.2021 20:08
17.05.2023 00:52
By AM-GM we have: $a^3+bc\ge2\sqrt{a^3bc}=2\sqrt{a^2*abc}=2\sqrt{a^2*1}=2\sqrt{a^2}=2a$ $b^3+ca\ge2\sqrt{b^3ca}=2\sqrt{b^2*abc}=2\sqrt{b^2*1}=2\sqrt{b^2}=2b$ $c^3+ab\ge2\sqrt{c^3ab}=2\sqrt{c^2*abc}=2\sqrt{c^2*1}=2\sqrt{c^2}=2c$ $=>$ $\frac{1}{a^3+bc}\leq\frac{1}{2a}$ $\frac{1}{b^3+ca}\leq\frac{1}{2b}$ $\frac{1}{c^3+ab}\leq\frac{1}{2c}$ $\frac{1}{a^3+bc}+\frac{1}{b^3+ca}+\frac{1}{c^3+ab}\leq\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}$ $\frac{1}{a^3+bc}+\frac{1}{b^3+ca}+\frac{1}{c^3+ab}\leq\frac{1}{2}(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})$ $\frac{1}{a^3+bc}+\frac{1}{b^3+ca}+\frac{1}{c^3+ab}\leq\frac{1}{2}(\frac{ab+bc+ac}{abc})$ $\frac{1}{a^3+bc}+\frac{1}{b^3+ca}+\frac{1}{c^3+ab}\leq\frac{ab+bc+ac}{2abc}$ $\frac{1}{a^3+bc}+\frac{1}{b^3+ca}+\frac{1}{c^3+ab}\leq\frac{ab+bc+ac}{2abc}*1$ $\frac{1}{a^3+bc}+\frac{1}{b^3+ca}+\frac{1}{c^3+ab}\leq\frac{ab+bc+ac}{2abc}*\frac{ab+bc+ac}{ab+bc+ac}$ $\frac{1}{a^3+bc}+\frac{1}{b^3+ca}+\frac{1}{c^3+ab}\leq\frac{(ab+bc+ac)^2}{2abc(ab+bc+ac)}$ $\frac{1}{a^3+bc}+\frac{1}{b^3+ca}+\frac{1}{c^3+ab}\leq\frac{(ab+bc+ac)^2}{2*1(ab+bc+ac)}$ $\frac{1}{a^3+bc}+\frac{1}{b^3+ca}+\frac{1}{c^3+ab}\leq\frac{(ab+bc+ac)^2}{2(ab+bc+ac)} ...(1)$ Now again from AM-GM we have: $ab+bc+ac\ge3\sqrt[3]{ab*bc*ac}$ $ab+bc+ac\ge3\sqrt[3]{a^2b^2c^2}$ $ab+bc+ac\ge3\sqrt[3]{(abc)^2}$ $ab+bc+ac\ge3\sqrt[3]{1}$ $ab+bc+ac\ge3*1$ $ab+bc+ac\ge3$ $=>$ $\frac{1}{ab+bc+ac}\leq\frac{1}{3} ...(2)$ Combining $(1)$ with $(2)$ we get $\frac{1}{a^3+bc}+\frac{1}{b^3+ca}+\frac{1}{c^3+ab}\leq\frac{(ab+bc+ac)^2}{2*3}$ $\frac{1}{a^3+bc}+\frac{1}{b^3+ca}+\frac{1}{c^3+ab}\leq\frac{(ab+bc+ac)^2}{6}$
17.05.2023 02:26
@above your solution is equivalent to #4, #6, #7. Just a suggestion for the next time you can use the sum notation, also you can try to not write symmetric expressions as it is very clear they are true, and what their sum gives you.
13.12.2023 10:03
We have, $$\frac{1}{a^3+bc}+\frac{1}{b^3+ca}+\frac{1}{c^3+ab}=\frac{bc}{a^3bc+(bc)^2}+\frac{ca}{ab^3c+(ca)^2}+\frac{ab}{abc^3+(ab)^2}=\frac{bc}{a^2+(bc)^2}+\frac{ca}{b^2+(ca)^2}+\frac{ab}{c^2+(ab)^2}$$By $AM-GM$, we have $$a^2+(bc)^2\ge 2\sqrt{a^2 \cdot (bc)^2}=2$$$$b^2+(ca)^2\ge 2\sqrt{b^2 \cdot (ca)^2}=2$$$$c^2+(ab)^2\ge 2\sqrt{c^2 \cdot (ab)^2}=2$$Thus, $$\frac{bc}{a^2+(bc)^2}+\frac{ca}{b^2+(ca)^2}+\frac{ab}{c^2+(ab)^2} \le \frac{ab+bc+ca}{2}$$By $AM-GM$ again, we have $$ab+bc+ca\ge 3\sqrt[3]{ab\cdot bc \cdot ca}=3 \Leftrightarrow \frac{(ab+bc+ca)^2}{6}\ge \frac{ab+bc+ca}{2}$$Therefore, $$\frac{1}{a^3+bc}+\frac{1}{b^3+ca}+\frac{1}{c^3+ab}=\frac{bc}{a^2+(bc)^2}+\frac{ca}{b^2+(ca)^2}+\frac{ab}{c^2+(ab)^2} \le \frac{ab+bc+ca}{2} \le \frac{(ab+bc+ca)^2}{6}$$The equality holds when $a=b=c=1$.