Problem

Source: Iran 3rd round 2009 - final exam problem 1

Tags: geometry, exterior angle, angle bisector, geometric inequality, Iran



Suppose $n>2$ and let $A_1,\dots,A_n$ be points on the plane such that no three are collinear. (a) Suppose $M_1,\dots,M_n$ be points on segments $A_1A_2,A_2A_3,\dots ,A_nA_1$ respectively. Prove that if $B_1,\dots,B_n$ are points in triangles $M_2A_2M_1,M_3A_3M_2,\dots ,M_1A_1M_n$ respectively then \[|B_1B_2|+|B_2B_3|+\dots+|B_nB_1| \leq |A_1A_2|+|A_2A_3|+\dots+|A_nA_1|\] Where $|XY|$ means the length of line segment between $X$ and $Y$. (b) If $X$, $Y$ and $Z$ are three points on the plane then by $H_{XYZ}$ we mean the half-plane that it's boundary is the exterior angle bisector of angle $\hat{XYZ}$ and doesn't contain $X$ and $Z$ ,having $Y$ crossed out. Prove that if $C_1,\dots ,C_n$ are points in ${H_{A_nA_1A_2},H_{A_1A_2A_3},\dots,H_{A_{n-1}A_nA_1}}$ then \[|A_1A_2|+|A_2A_3|+\dots +|A_nA_1| \leq |C_1C_2|+|C_2C_3|+\dots+|C_nC_1|\] Time allowed for this problem was 2 hours.


Attachments: