Let $ A, B, D, E, F, C $ be six points lie on a circle (in order) satisfy $ AB=AC $ . Let $ P=AD \cap BE, R=AF \cap CE, Q=BF \cap CD, S=AD \cap BF, T=AF \cap CD $ . Let $ K $ be a point lie on $ ST $ satisfy $ \angle QKS=\angle ECA $ . Prove that $ \frac{SK}{KT}=\frac{PQ}{QR} $
Problem
Source: 2015 China National Olympiad
Tags: ratio, trigonometry, geometry
21.12.2014 00:58
TelvCohl wrote: Let $ A, B, D, E, F, C $ be six points lie on a circle (in order) satisfy $ AB=AC $ . Let $ P=AD \cap BE, R=AF \cap CE, Q=BF \cap CD, S=AD \cap BF, T=AF \cap CD $ . Let $ K $ be a point lie on $ ST $ satisfy $ \angle QKS=\angle ECA $ . Prove that $ \frac{SK}{KT}=\frac{PQ}{QR} $ Briefly solution According to Pascal's theorem we have $ST || BC$ so $ QK || AE$. + $\triangle QKS \sim \triangle RCA ; \triangle QKT \sim PBA$ +) $\frac{QK}{KS} = \frac{RC}{CA}$ and $\frac{QK}{KT} = \frac{PB}{AB} \rightarrow \frac{KS}{KT} = \frac{PB}{RC}$ + We need to prove $ \frac{PQ}{PB} = \frac{RQ}{RC}$ $\leftrightarrow \frac{PQ}{AP}. \frac{AP}{PB} = \frac{RQ}{AR}. \frac{AR}{RC}$ $\leftrightarrow \frac{sin \angle PAQ}{sin \angle PAB}= \frac{sin \angle RAQ}{sin \angle RAC}$ $\leftrightarrow \frac{MD}{DB} = \frac{MF}{FC}$ with $M$ is the intersection of $AQ$ and the circle. $\leftrightarrow \frac{MD}{MF} = \frac{DB}{FC}$ (*) +) Applying Cevasin theorem in triangle $ADF$ we have (*).
Attachments:
21.12.2014 12:12
My solution: From Pascal theorem ( for $ AADCBF $ ) we get $ BC \parallel ST $ , so from Reim theorem we get $ D, F, S, T $ are concyclic . From Pascal theorem ( for $ ADCEBF $ ) we get $ P, Q, R $ are collinear . Since $ \triangle ACR \sim \triangle SKQ $ and $ \triangle ABS \sim \triangle TKQ $ , so we get $ \frac{SK}{KT}=\frac{BP}{CR} $ . ... $ (\star) $ Since $ \frac{BP}{PQ}=\frac{\sin \angle RQF}{\sin \angle FCR}=\frac{CR}{QR} $ ( $ \because FA $ bisect $ \angle BFC $ ) , so combine with $ (\star) $ we get $ \frac{SK}{KT}=\frac{BP}{CR}=\frac{PQ}{QR} $ . Q.E.D
06.09.2015 01:17
Keeping in mind that $AB = AC$, it follows form Pascal's Theorem on $CDAABF$ that $BC \parallel ST.$ Meanwhile, from Pascal's Theorem on $ADCEBF$, it follows that $P, Q, R$ are collinear. Then note that $\angle QKS = \angle ECA = \tfrac{1}{2}\widehat{AE}$ and $\angle QSK = \angle FBC = \tfrac{1}{2}\widehat{CF}.$ Therefore, $\angle SQK = \tfrac{1}{2}\left(\widehat{AC} + \widehat{EF}\right) = \angle ARC.$ Similarly, $\angle TQK = \angle APB.$ Now, from the Law of Sines applied to $\triangle QSP$ and $\triangle QTR$, we obtain \[\frac{QP}{QS} \cdot \frac{QT}{QR} = \frac{\sin\angle QSP}{\sin\angle QPS} \cdot \frac{\sin\angle QRT}{\sin\angle QTR}.\] Observe that $\angle QSP = \tfrac{1}{2}\left(\widehat{AB} + \widehat{DF}\right) = \tfrac{1}{2}\left(\widehat{AC} + \widehat{DF}\right) = \angle QTR.$ Therefore, we have \[\frac{QP}{QS} \cdot \frac{QT}{QR} = \frac{\sin\angle QRT}{\sin\angle QPS} \implies \frac{QP}{QR} \cdot \frac{QT}{QS} = \frac{\sin\angle ARP}{\sin\angle APR} = \frac{AP}{AR}.\] Now, note that $\angle ABP = \angle ABE = 180^{\circ} - \angle ACE = 180^{\circ} - \angle ACR.$ Therefore, it follows from the Law of Sines applied to $\triangle ABP$ and $\triangle ACR$ that \[\frac{AP}{AB} \cdot \frac{AC}{AR} = \frac{\sin\angle ABP}{\sin\angle APB} \cdot \frac{\sin\angle ARC}{\sin\angle ACR} \implies \frac{AP}{AR} = \frac{\sin\angle ARC}{\sin\angle APB}.\] Finally, by the Ratio Lemma in $\triangle QST$, we obtain \[\frac{QP}{QR} \cdot \frac{QT}{QS} = \frac{\sin\angle ARC}{\sin\angle APB} = \frac{\sin\angle SQK}{\sin\angle TQK} = \frac{KS}{KT} \cdot \frac{QT}{QS}.\] Simplification yields $\tfrac{QP}{QR} = \tfrac{KS}{KT}$ as desired. $\square$
14.07.2017 16:24
My solution:(similar TelvCohl's solution) From Pascal theorem for $(DAFBEC)$ and $(FAADCB)$ we find $P,Q,R$ collinear and $ST\parallel BC.$ Also we know $\angle TDS=\angle CDA=\angle CBA=\angle ACB=\angle TFS\to DSTF$ is cyclic. Also we can find easily $\triangle ABP\sim \triangle TKQ,(\angle ABP=\angle TKQ,\angle PAB=\angle QTK),$ and $\triangle ACR\sim \triangle SKQ,(\angle ACR=\angle SKQ,\angle RAC=\angle QSK).$ Then we find this similarity $$\frac{SK}{KT}=\frac{BP}{CR}=^{?}\frac{PQ}{QR}.$$In $\triangle BPQ,\triangle RQF,\triangle CRF$ we apply The Sine Law we can find easily.
11.11.2020 10:21
[asy][asy] size(8cm); real labelscalefactor = 0.5; /* changes label-to-point distance */pen dps = linewidth(0.7) + fontsize(0); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -18.0889697781503, xmax = 9.540702758904814, ymin = -12.209113124172188, ymax = 11.434558267304187; /* image dimensions */pen qqwuqq = rgb(0,0.39215686274509803,0); pen zzttff = rgb(0.6,0.2,1); /* draw figures */draw(circle((-4.391040265759765,1.60901875775125), 8.607369777823981), linewidth(0.8)); draw((-4.308954571928481,10.215997114356192)--(-11.840772098467282,-2.702397495980459), linewidth(0.8)); draw((-11.047430380246848,7.066058718751748)--(-3.5963874053975373,-6.961590399345799), linewidth(0.8)); draw((-11.047430380246848,7.066058718751748)--(-0.7119811915401089,-6.1724553198641), linewidth(0.8)); draw((-11.840772098467282,-2.702397495980459)--(2.368218382636627,6.9381122093878655), linewidth(0.8)); draw((-4.308954571928481,10.215997114356192)--(-0.7119811915401089,-6.1724553198641), linewidth(0.8)); draw((-3.5963874053975373,-6.961590399345799)--(2.368218382636627,6.9381122093878655), linewidth(0.8)); draw((-11.047430380246848,7.066058718751748)--(2.368218382636627,6.9381122093878655), linewidth(0.8) + blue); draw((-3.5963874053975373,-6.961590399345799)--(-4.308954571928481,10.215997114356192), linewidth(0.8)); draw((-8.241166848448568,3.4715599714345204)--(-2.817317417719443,3.4198321262708196), linewidth(0.8) + blue); draw(circle((-5.5832232842083105,-2.2144205647250197), 6.27654671362138), linewidth(0.8) + linetype("4 4") + qqwuqq); draw((-6.336620672197552,1.0320567789616515)--(-6.5851600451819,7.023501558580027), linewidth(0.8)); draw((-4.308954571928481,10.215997114356192)--(2.368218382636627,6.9381122093878655), linewidth(0.8)); draw((-8.71053232396603,2.6665154509269584)--(-1.5734557860473701,-2.247423377079167), linewidth(0.8) + linetype("4 4") + zzttff); /* dots and labels */dot((-4.308954571928481,10.215997114356192),dotstyle); label("$A$", (-4.19986019635109,10.469005194772691), NE * labelscalefactor); dot((-11.047430380246848,7.066058718751748),dotstyle); label("$B$", (-10.958731704071562,7.324768266272692), NE * labelscalefactor); dot((2.368218382636627,6.9381122093878655),dotstyle); label("$C$", (2.4599802270071773,7.176221639729384), NE * labelscalefactor); dot((-11.840772098467282,-2.702397495980459),dotstyle); label("$D$", (-11.7509803789692,-2.454551314495024), NE * labelscalefactor); dot((-3.5963874053975373,-6.961590399345799),dotstyle); label("$E$", (-3.506642605815657,-6.712887942069827), NE * labelscalefactor); dot((-0.7119811915401089,-6.1724553198641),dotstyle); label("$F$", (-0.609983388221169,-5.92063926717219), NE * labelscalefactor); dot((-8.71053232396603,2.6665154509269584),linewidth(4pt) + dotstyle); label("$P$", (-8.6067434504692,1.868369469973479), NE * labelscalefactor); dot((-6.336620672197552,1.0320567789616515),linewidth(4pt) + dotstyle); label("$Q$", (-6.229997425776286,1.2343565779971013), NE * labelscalefactor); dot((-1.5734557860473701,-2.247423377079167),linewidth(4pt) + dotstyle); label("$R$", (-1.4765053763904603,-2.0584269770462056), NE * labelscalefactor); dot((-4.1755689795595305,7.000521025078456),linewidth(4pt) + dotstyle); label("$X$", (-4.076071340898334,7.200979410819936), NE * labelscalefactor); dot((-8.241166848448568,3.4715599714345204),linewidth(4pt) + dotstyle); label("$S$", (-8.854321161374711,3.2892515785128493), NE * labelscalefactor); dot((-2.817317417719443,3.4198321262708196),linewidth(4pt) + dotstyle); label("$T$", (-2.3430273645597515,3.1654627230600934), NE * labelscalefactor); dot((-6.5851600451819,7.023501558580027),linewidth(4pt) + dotstyle); label("$Y$", (-6.477575136681798,7.225737181910486), NE * labelscalefactor); dot((-6.437103336919999,3.4543544204357928),linewidth(4pt) + dotstyle); label("$K$", (-6.3290285101384915,3.660618144871117), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); [/asy][/asy] CLAIM 1. $ST\|BC$ Proof. Notice that $\angle SDT=\angle ADC=\angle AFB=\angle SFT$ hence $S,T,F,D$ are concyclic, so $ST\|BC$ by Reim's theorem on $(STFD)$ and $(BCDF)$. $\blacksquare$ CLAIM 2. Let $KQ$ meet $BC$ at $Y$, let $AE$ meet $BC$ at $X$, then $AE\|YQ$. Proof. By shooting lemma $\triangle AXC\sim \triangle ACE$ hence $$\angle BYQ=\angle SKQ=\angle ACE=\angle YXE$$$\blacksquare$ Therefore, $$\frac{SK}{KT}=\frac{SQ}{QT}\cdot\frac{\sin\angle SQK}{\sin\angle TQK}\qquad(1)$$Meanwhile $P,Q,R$ are collinear by Pascal's theorem, hence $$\frac{PQ}{QR}=\frac{PQ}{\sin\angle PSQ}\cdot\frac{QR}{\sin\angle QTR}=\frac{SQ}{QT}\frac{\sin\angle ARP}{\sin\angle APR}\qquad(2)$$Now we have $$\angle SQK=\angle (AE,BF)=\widehat{AB}+\widehat{EF}=\widehat{AC}+\widehat{EF}=\angle ERF\qquad(3)$$and similarly $$\angle TQK=\angle DPE\qquad(4)$$Since $\angle PEA=\angle PER$, by Ceva's theorem on $\triangle EPR$ and point $A$ we have $$\frac{\sin\angle ERF}{\sin\angle ARP}\cdot\frac{\sin\angle APR}{\sin\angle DPE}=1\qquad(5)$$Combining $(1),(2),(3),(4),(5)$ yields the result.