Find all functions $ f:\mathbb{R}\rightarrow\mathbb{R} $ such that for all $x,y\in{{\mathbb{R}}}$ holds $f(x^2)+f(2y^2)=(f(x+y)+f(y))(f(x-y)+f(y))$ Proposed by Matija Bucić
Problem
Source: European Mathematical Cup 2014, Senior Division, P4
Tags: function, algebra
15.12.2014 12:39
It's not very hard! Here my longer solution: Let $ P(x,y) $ be the assertion of the function. From $ P(x,-y)=P(x,y) $, we get $ (f(y)-f(-y))(f(x+y)+f(x-y)+f(y)+f(-y) (*) $. We have $ P(0,0) \implies f(0)=0 $ or $ f(0)=\frac{1}{2} $. Case 1: $ f(0)=0 $ i) $ P(0,x) \implies f(2x^2)=2f(x)(f(x)+f(-x)) $ and $ P(x,0) \implies f(x^2)=f(x)^2 $, thus $ f(x)=f(-x) $ or $ f(x)=-f(-x) $. If $ f $ is odd, the $ f(2x^2)=0 $, so $ f(x)=0 $ for all $ x \in R_0 $ and since $ f $ is odd, we get $ f(x)=0 $, for any $ x $. Let $ f $ is even, then $ f(2x^2)=4f(x)^2=4f(x^2) $, so $ f(2x)=4f(x) $, for any $ x $ ( because $ f $ is even).Taking $ x=y $, in original equation, we get $ 3f(x)^2=2f(x)f(2x)=8f(x)^2 $ or $ f(x)=0 $, for any $ x $. Case 2: $ f(0)=\frac{1}{2} $. Then $ P(x,0) \implies f(x^2)=f(x)^2+f(x)-\frac{1}{4} $ , so $ f $ is even or $ f(x)+f(-x)+1=0 $ a) $ f(x)=f(-x) $. Then $ P(0,x) \implies f(2x^2)=4f(x)^2-\frac{1}{2} $.Hence $ (f(x+y)+f(y))(f(x-y)+f(y)=f(x^2)+f(2y^2)=f(x)^2+f(x)+4f(y)^2-\frac{3}{4} $.Then taking $ x=y $ in the least equation we have $ f(2x)=4f(x)-\frac{3}{2} $ (because $ f(x)=-\frac{1}{2} $ isn't solution).So we have $ 4f(x)^2-\frac{1}{2}=f(2x^2)=4f(x^2)-\frac{3}{2}=4f(x)^2+4f(x)-1-\frac{3}{2} $, so $ f(x)=\frac{1}{2} $ b) Let $ f(x)+f(-x)+1=0 $, then by $ (*) $, we get $ f(x+y)+f(x-y)=1 $ for $ y $ not equal to zero, and taking $ y=x $, we get $ f(x)=\frac{1}{2} $, for any $ x $, but $ 0=f(x)+f(-x)+1=2 $, a contradiction. Answer: 1) $ f(x)=0 $; 2) $ f(x)=\frac{1}{2} $;
15.12.2014 13:14
Sardor wrote: It's not very hard! ... Answer: 1) $ f(x)=0 $; 2) $ f(x)=\frac{1}{2} $; And what about $f(x)=x^2$ for example ?
15.12.2014 14:02
You are right, Sardor. My solution almost the same as your's. However, $ f(x)=x^2$ holds the aforementioned equation, the equation does not pay the way for this.
16.12.2014 06:02
Sardor wrote: $ P(x,0) \implies f(x^2)=f(x)^2 $, thus $ f(x)=f(-x) $ or $ f(x)=-f(-x) $. If $ f $ is odd, the $ f(2x^2)=0 $, so $ f(x)=0 $ for all $ x \in R_0 $ and since $ f $ is odd, we get $ f(x)=0 $, for any $ x $. Let $ f $ is even, then ... I don't think this line is valid. Even though $ f(x)=f(-x) $ or $ f(x)=-f(-x) $ at any particular x, that doesn't mean $f(x)=f(-x)$ over all x or $f(x)=-f(-x)$ over all x, like you seem to assume in the next few lines.
15.04.2021 10:49
Anyone???
23.04.2021 14:58
gobathegreat wrote: Find all functions $ f:\mathbb{R}\rightarrow\mathbb{R} $ such that for all $x,y\in{{\mathbb{R}}}$ holds $f(x^2)+f(2y^2)=(f(x+y)+f(y))(f(x-y)+f(y))$ Let $P(x,y)$ be the assertion $f(x^2)+f(2y^2)=(f(x+y)+f(y))(f(x-y)+f(y))$ Let $a=f(0)$ Subtracting $P(0,-x)$ from $P(0,x)$, we get $f(x)^2=f(-x)^2$ And so $\forall x$, either $f(-x)=f(x)$, either $f(-x)=-f(x)$ $P(0,0)$ $\implies$ $a=2a^2$ and so $a=0$ or $a=\frac 12$ $P(0,x)$ $\implies$ $f(2x^2)=4f(x)^2-a$ $P(x,0)$ $\implies$ $f(x^2)=f(x)^2+2af(x)+a^2-a$ $P(x,x)$ $\implies$ $(f(x)+a)(f(2x)-4f(x)+3a)=0$ 1) If $a=\frac 12$, then $\boxed{\text{S1 : }f(x)=\frac 12\quad\forall x}$
2) $a=0$ 2.1) Some basic stuff $P(0,x)$ $\implies$ $f(2x^2)=4f(x)^2$ $P(x,0)$ $\implies$ $f(x^2)=f(x)^2$ (and so $f(x)\ge 0\quad\forall x\ge 0$) $P(x,x)$ $\implies$ $f(x)(f(2x)-4f(x))=0$ If $f(x)\ne 0$ : $P(0,x)$ $\implies$ $4f(x)^2=2f(x)(f(-x)+f(x))$ and so $f(-x)=f(x)$ If $f(x)=0$ : $P(-x,x)$ $\implies$ $f(-x)^2=0$ and so $f(-x)=f(x)$ again. So $f(-x)=f(x)$ $\forall x$ and $f(x)$ is an even function. (and so $f(x)\ge 0\quad\forall x$) $f(2x^2)=4f(x^2)$ and so $f(2x)=4f(x)$ $\forall x\ge 0$ and, since even, $f(2x)=4f(x)\quad\forall x$ 2.2) Study of $U=f^{-1}(\{0\})$ : $U\in\{\{0\},\mathbb R\}$
2.3) If $U=\mathbb R$ : $\boxed{\text{S2 : }f(x)=0\quad\forall x}$, which indeed fits Trivial. 2.4) If $U=\{0\}$ : $\boxed{\text{S3 : }f(x)=x^2\quad\forall x}$, which indeed fits
29.07.2022 20:36
pco wrote: $P(0,x)$ $\implies$ $f(2x^2)=4f(x)^2-a$ This part is wrong since we cannot exactly say either $f(x)+f(-x)=0$ or $f(x)=f(-x)$. pco wrote: 1) If $a=\frac 12$, then $\boxed{\text{S1 : }f(x)=\frac 12\quad\forall x}$ However realizing $f(x)^2=f(-x)^2$ and $f((-x)^2)=f(x^2)$ gives $f(x)=f(-x)$ because of $P(x, 0)$ and $a \neq 0$.
01.09.2022 20:59
Clearly one of the hardest functional equations to appear in a test. For another solution, one may look at the official solution , it is much like the solution in #7, but a bit slower.