Let $\triangle ABC$ be an acute triangle of circumcentre $O$. Let the tangents to the circumcircle of $\triangle ABC$ in points $B$ and $C$ meet at point $P$. The circle of centre $P$ and radius $PB=PC$ meets the internal angle bisector of $\angle BAC$ inside $\triangle ABC$ at point $S$, and $OS \cap BC = D$. The projections of $S$ on $AC$ and $AB$ respectively are $E$ and $F$. Prove that $AD$, $BE$ and $CF$ are concurrent. Author: Cosmin Pohoata
Problem
Source: Romania ,4th TST 2014,Problem 1
Tags: geometry, circumcircle, trigonometry, angle bisector, projective geometry, geometry proposed
05.12.2014 20:02
My solution: Let $ X=AB \cap (P) $ . Since $ \angle CXA+\angle XAC=\frac{\angle CPB+\angle BOC}{2}=90^{\circ} $ , so we get $ \angle ACX=90^{\circ} $ and $ \angle SBF=\angle SCX=\angle CSE $ , hence $ \triangle SBF \sim \triangle CSE $ . Since $ SE=SF $ , so we get $ \frac{SB^2}{SC^2}=\frac{SF}{CE} \cdot \frac{BF}{SE}=\frac{BF}{CE} $ . ... $ (1) $ Since $ SD $ is $ S - $ symmedian of $ \triangle SBC $ , so we get $ \frac{BD}{DC}=\frac{SB^2}{SC^2} $ . ... $ (2) $ From $ (1) $ and $ (2) $ we get $ \frac{AF}{FB} \cdot \frac{BD}{DC} \cdot \frac{CE}{EA}=\frac{CE}{FB} \cdot \frac{BD}{DC}=\frac{SC^2}{SB^2} \cdot \frac{SB^2}{SC^2}=1 $ , so from the converse of Ceva theorem we get $ AD, BE, CF $ are concurrent . Q.E.D
05.12.2014 21:12
andreiromania wrote: Let $\bigtriangleup ABC$ be an acute triangle of circumcentre $O$.Let the tangents to the circumcircle of $\bigtriangleup ABC$ in points $B$ and $C$ meet at point $P$.The circle of centre $P$ and radius $PB=PC$ meets the internal angle bisector of $\angle BAC$ inside $\bigtriangleup ABC$ at point $S$,and $OS \cap BC=D$.The projections of $S$ on $AC$ and $AB$ respectively are $E$ and $F$.Prove that $AD$,$BE$ and $CF$ are concurrent. If there exists any purely synthetic proof I would love to read it. Let's Q be the projection of S on BC, then we have E, F, Q, D concyclic. I have seen this problem several times in AoPS but I can't search any links :-|
06.12.2014 08:01
qua96 wrote: Let's Q be the projection of S on BC, then we have E, F, Q, D concyclic. My solution: Let $ M $ be the midpoint of $ EF $ . Let $ Y=DE \cap AS, Z=DF \cap AS $ . From the original problem we get $ AD, BE, CF $ are concurrent . Since $ Y(E,F;M,A)=-1 $ So from $ EM=MF $ we get $ BY \parallel EF $ , ie. $ Y $ is the projection of $ B $ on $ AS $ hence we get $ B, F, S, Y $ are concyclic . Similarly, we can prove $ CZ \parallel EF $ and $ C, E, S, Z $ are concyclic . Since $ \angle MEY=90^{\circ}-\angle EYS=90^{\circ}-\angle SYF=90^{\circ}-\angle SBF=\angle FSB $ $ \angle ZFM=90^{\circ}-\angle SZF=90^{\circ}-\angle EZS=90^{\circ}-\angle ECS=\angle CSE $ , so we get $ \angle MED=\angle MZD $ , ie. $ D, E, M, Z $ are concyclic hence $ \angle EDF=90^{\circ} $ . ... $ ( \& ) $ Since $ \angle EQF=\angle EQS+\angle SQF=\angle ECS+\angle SBF=90^{\circ} $ , so combine with $ ( \& ) $ we get $ D, E, F, Q $ are concyclic . Q.E.D
Attachments:
06.12.2014 13:38
TelvCohl wrote: My solution: Let $ X=AB \cap (P) $ . Since $ \angle CXA+\angle XAC=\frac{\angle CPB+\angle BOC}{2}=90^{\circ} $ , so we get $ \angle ACX=90^{\circ} $ and $ \angle SBF=\angle SCX=\angle CSE $ , hence $ \triangle SBF \sim \triangle CSE $ . Since $ SE=SF $ , so we get $ \frac{SB^2}{SC^2}=\frac{SF}{CE} \cdot \frac{BF}{SE}=\frac{BF}{CE} $ . ... $ (1) $ Since $ SD $ is $ S - $ symmedian of $ \triangle SBC $ , so we get $ \frac{BD}{DC}=\frac{SB^2}{SC^2} $ . ... $ (2) $ From $ (1) $ and $ (2) $ we get $ \frac{AF}{FB} \cdot \frac{BD}{DC} \cdot \frac{CE}{EA}=\frac{CE}{FB} \cdot \frac{BD}{DC}=\frac{SC^2}{SB^2} \cdot \frac{SB^2}{SC^2}=1 $ , so from the converse of Ceva theorem we get $ AD, BE, CF $ are concurrent . Q.E.D That's basically how I did it,except instead of the similarity I used the sine theorem to write $\frac{CE}{FB}$ in terms of $BS$ and $CS$.
08.12.2014 01:39
Let $EF\cap BC\equiv G$ . It suffices to show that $(G,D;B,C)$ is harmonic .(Let $G$ be closer to $B$) To prove this note that $GS$ is tangent to the circle centered at $P$ . Indeed we have $\angle BSC=90+\angle A$ and $\angle FSE=180-\angle A$ . Thus $\angle FSB + \angle ESC= 90 $ and $FSB$~$SEC$. Also from Menelaus we have $\frac{GB}{GC}=\frac{FB}{EC}=\frac{FB}{ES}\frac{FS}{EC}=(\frac{SB}{SC})^2$ , and our claim is proved . Next we find that $OS$ is the polar of $G$ with respect to the circle centered at $P$. So $D$ is the harmonic conjugate of $G$, as desired.
24.01.2015 08:03
TelvCohl wrote: My solution: Let $ X=AB \cap (P) $ . Since $ \angle CXA+\angle XAC=\frac{\angle CPB+\angle BOC}{2}=90^{\circ} $ , so we get $ \angle ACX=90^{\circ} $ and $ \angle SBF=\angle SCX=\angle CSE $ , hence $ \triangle SBF \sim \triangle CSE $ . Since $ SE=SF $ , so we get $ \frac{SB^2}{SC^2}=\frac{SF}{CE} \cdot \frac{BF}{SE}=\frac{BF}{CE} $ . ... $ (1) $ Since $ SD $ is $ S - $ symmedian of $ \triangle SBC $ , so we get $ \frac{BD}{DC}=\frac{SB^2}{SC^2} $ . ... $ (2) $ From $ (1) $ and $ (2) $ we get $ \frac{AF}{FB} \cdot \frac{BD}{DC} \cdot \frac{CE}{EA}=\frac{CE}{FB} \cdot \frac{BD}{DC}=\frac{SC^2}{SB^2} \cdot \frac{SB^2}{SC^2}=1 $ , so from the converse of Ceva theorem we get $ AD, BE, CF $ are concurrent . Q.E.D Excuse me, why dose $SD$ become the $S-symmedian$ of $\triangle SBC$?
24.01.2015 19:36
guldam wrote: Excuse me, why dose $SD$ become the $ S- $ symmedian of $\triangle ABC$? That's because $ OB, OC $ are the tangent of $ \odot (SBC) $ , so $ OS \equiv SD $ is the $ S- $ symmedian of $ \triangle SBC $ .
30.01.2015 17:46
I got it. Thanks!
05.04.2015 11:33
TelvCohl wrote: My solution: Let $ X=AB \cap (P) $ . Since $ \angle CXA+\angle XAC=\frac{\angle CPB+\angle BOC}{2}=90^{\circ} $ , so we get $ \angle ACX=90^{\circ} $ and $ \angle SBF=\angle SCX=\angle CSE $ , hence $ \triangle SBF \sim \triangle CSE $ . Since $ SE=SF $ , so we get $ \frac{SB^2}{SC^2}=\frac{SF}{CE} \cdot \frac{BF}{SE}=\frac{BF}{CE} $ . ... $ (1) $ Since $ SD $ is $ S - $ symmedian of $ \triangle SBC $ , so we get $ \frac{BD}{DC}=\frac{SB^2}{SC^2} $ . ... $ (2) $ From $ (1) $ and $ (2) $ we get $ \frac{AF}{FB} \cdot \frac{BD}{DC} \cdot \frac{CE}{EA}=\frac{CE}{FB} \cdot \frac{BD}{DC}=\frac{SC^2}{SB^2} \cdot \frac{SB^2}{SC^2}=1 $ , so from the converse of Ceva theorem we get $ AD, BE, CF $ are concurrent . Q.E.D Can you show me why $ \triangle SBF \sim \triangle CSE $
01.09.2016 13:02
Panoz93 wrote: Let $EF\cap BC\equiv G$ . It suffices to show that $(G,D;B,C)$ is harmonic .(Let $G$ be closer to $B$) To prove this note that $GS$ is tangent to the circle centered at $P$ . Indeed we have $\angle BSC=90+\angle A$ and $\angle FSE=180-\angle A$ . Thus $\angle FSB + \angle ESC= 90 $ and $FSB$~$SEC$. Also from Menelaus we have $\frac{GB}{GC}=\frac{FB}{EC}=\frac{FB}{ES}\frac{FS}{EC}=(\frac{SB}{SC})^2$ , and our claim is proved . Next we find that $OS$ is the polar of $G$ with respect to the circle centered at $P$. So $D$ is the harmonic conjugate of $G$, as desired. Why is $OS$ the polar of $G$ with respect to the circumcircle of $BSC$?
23.04.2021 14:28
By Ceva, it suffices to show that $\frac{BD}{DC} = \frac{BF}{EC}$. Since $SD$ is a symmedian in $\triangle SBC$, we get $\frac{BD}{DC} = \frac{SB^2}{SC^2}$. Let $AB\cap (P) = T\neq B$ and let $SE\cap (P) = R$. We have $\angle FBS = \angle SCT = \angle CTR = \angle CSE \implies \triangle BSF \sim \triangle SCE$. So we have $\frac{BF}{BS} = \frac{SE}{SC}$. $(1)$ Also , we have $\frac{CE}{CS} = \frac{SF}{SB} = \frac{SE}{SB}$. $(2)$ Finally dividing $(1)$ and $(2)$ we get $\frac{BF}{CE} = \frac{SB^2}{SC^2} = \frac{BD}{DC}$ as desired.
08.01.2022 22:40
Notice \begin{align*}\angle SBF+\angle SCE&=\angle ABO+\angle OBS+\angle ACO+\angle OCS\\&=90-\angle C+\tfrac{1}{2}\angle BPS+90-\angle B+\tfrac{1}{2}\angle CPS\\&=\angle A+\tfrac{1}{2}(\angle BPC)\\&=\angle A+\tfrac{1}{2}(180-2\angle A)\\&=90\end{align*}so $\triangle SBF\sim\triangle SCE.$ Also, $(P)$ and $(ABC)$ are orthogonal so $\overline{OS}$ is the $S$-symmedian of $\triangle SBC.$ Hence, $$\frac{AF}{AE}\cdot\frac{EC}{FB}\cdot\frac{DB}{DC}=\frac{EC}{FB}\cdot\frac{SB^2}{SC^2}=\frac{EC}{FB}\cdot\frac{FB\cdot SF}{EC\cdot SE}=1$$and Ceva finishes. $\square$
11.12.2023 16:46
[asy][asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */ import graph; size(12cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -3.194876437144554, xmax = 2.77819498676157, ymin = -2.354233626441894, ymax = 2.880645184561807; /* image dimensions */ pen zzttqq = rgb(0.6,0.2,0); pen qqwuqq = rgb(0,0.39215686274509803,0); pen ccqqqq = rgb(0.8,0,0); draw((0.16371816156429064,2.6671746142936645)--(-1.6436907489583583,-1.54909025640956)--(2.26,0.02)--cycle, linewidth(0.4) + zzttqq); /* draw figures */ draw((0.16371816156429064,2.6671746142936645)--(-1.6436907489583583,-1.54909025640956), linewidth(0.4) + zzttqq); draw((-1.6436907489583583,-1.54909025640956)--(2.26,0.02), linewidth(0.4) + zzttqq); draw((2.26,0.02)--(0.16371816156429064,2.6671746142936645), linewidth(0.4) + zzttqq); draw(circle((-0.11641699652761635,0.2917333787137656), 2.391902332975269), linewidth(0.4) + linetype("4 4") + qqwuqq); draw((xmin, -0.829668700080778*xmin-2.9128090234326423)--(xmax, -0.829668700080778*xmax-2.9128090234326423), linewidth(0.4)); /* line */ draw((xmin, 8.745399655265947*xmin-19.74460322090104)--(xmax, 8.745399655265947*xmax-19.74460322090104), linewidth(0.4)); /* line */ draw(circle((1.757877184038014,-4.37126470161512), 4.419879297216218), linewidth(0.8) + linetype("4 4") + ccqqqq); draw((0.16371816156429064,2.6671746142936645)--(1.0639642380728371,-0.4607471137046554), linewidth(0.2) + linetype("4 4") + blue); draw((-1.6436907489583583,-1.54909025640956)--(1.6653196782616304,0.7709594475619359), linewidth(0.4) + linetype("4 4") + blue); draw((-0.7892764848444945,0.4440596201002954)--(2.26,0.02), linewidth(0.4) + linetype("4 4") + blue); draw((1.0639642380728371,-0.4607471137046554)--(-0.11641699652761635,0.2917333787137656), linewidth(0.2)); draw((-0.7892764848444945,0.4440596201002954)--(0.5354169293064286,-0.12380382156429634), linewidth(0.4)); draw((0.5354169293064286,-0.12380382156429634)--(1.6653196782616304,0.7709594475619359), linewidth(0.4)); draw((0.16371816156429064,2.6671746142936645)--(0.5354169293064286,-0.12380382156429634), linewidth(0.4)); /* dots and labels */ dot((0.16371816156429064,2.6671746142936645),dotstyle); label("$A$", (0.19129944932169032,2.6990886940067655), NE * labelscalefactor); dot((-1.6436907489583583,-1.54909025640956),dotstyle); label("$B$", (-1.6167006024556025,-1.476710588759193), NE * labelscalefactor); dot((2.26,0.02),dotstyle); label("$C$", (2.2867639444777996,0.09677899605116812), NE * labelscalefactor); dot((1.757877184038014,-4.37126470161512),linewidth(4pt) + dotstyle); label("$S$", (0.43337477006174624,-0.23607456996640827), NE * labelscalefactor); dot((-0.11641699652761635,0.2917333787137656),linewidth(4pt) + dotstyle); label("$O$", (-0.05834072519149238,0.2556409252868296), NE * labelscalefactor); dot((1.0639642380728371,-0.4607471137046554),linewidth(4pt) + dotstyle); label("$D$", (1.1142116096431536,-0.48571474447959057), NE * labelscalefactor); dot((1.6653196782616304,0.7709594475619359),linewidth(4pt) + dotstyle); label("$E$", (1.696705350173913,0.8305698120444616), NE * labelscalefactor); dot((-0.7892764848444945,0.4440596201002954),linewidth(4pt) + dotstyle); label("$F$", (-0.7618721260922799,0.5052810998000119), NE * labelscalefactor); dot((0.8699638500134472,0.21331084098759198),linewidth(4pt) + dotstyle); label("$G$", (0.9023957039956046,0.27077063283308306), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */[/asy][/asy] Easy Problem By Ceva, It suffices to prove $\frac{BD}{CD}= \frac{BF}{CE}$ But Notice $OB,OC$ are tangent to $(BSC)$, hence $SD$ is the symmedian in $\triangle SBC$ therfore $\frac{BS}{SC}= \frac{BD^2}{CD^2}$ and therefore it suffices to show that $\frac{\sin(\measuredangle ABS)}{\sin(\measuredangle ACS)}=\frac{BS}{CS}$, but this is clear from sine rule.