Problem

Source: IMO LongList, Netherlands 1, IMO 1977, Day 1, Problem 3

Tags: number theory, prime numbers, prime factorization, Dirichlet s Theorem, IMO, IMO 1977



Let $n$ be a given number greater than 2. We consider the set $V_n$ of all the integers of the form $1 + kn$ with $k = 1, 2, \ldots$ A number $m$ from $V_n$ is called indecomposable in $V_n$ if there are not two numbers $p$ and $q$ from $V_n$ so that $m = pq.$ Prove that there exist a number $r \in V_n$ that can be expressed as the product of elements indecomposable in $V_n$ in more than one way. (Expressions which differ only in order of the elements of $V_n$ will be considered the same.)