Let $f$ be an injective function from ${1,2,3,\ldots}$ in itself. Prove that for any $n$ we have: $\sum_{k=1}^{n} f(k)k^{-2} \geq \sum_{k=1}^{n} k^{-1}.$
Problem
Source: IMO LongList, France 2, IMO 1978, Day 2, Problem 5
Tags: rearrangement inequality, algebra, Inequality, Summation, IMO, IMO 1978
12.05.2006 15:02
Let's solve the problem, which is still unsolved: We know that all the unknowns are integers, so the smallest one must greater or equal to 1. Let me denote the permutations of $(k_1,k_2,...,k_n)$ with $(y_1,y_2,...,y_n)=y_i (*)$. From the rearrangement's inequality we know that $Random Sum\geq Reversed Sum$. We will denote we permutations of $y_i$ in this form $y_n \geq ...\geq y_1$. So we have $\frac{k_1}{1^2}+\frac{k_2}{2^2}+...+\frac{k_n}{n^2} \geq \frac{y_1}{1^2}+ \frac{y_2}{2^2}+...+ \frac{y_n}{n^2} \geq 1+\frac{1}{2}+...+\frac{1}{n}$. Let's denote $\frac{y_1}{1^2}+ \frac{y_2}{2^2}+...+ \frac{y_n}{n^2}=T$ and $1+\frac{1}{2}+...+\frac{1}{n}=S$. We have $T \geq S$. Which comes from $y_1 \geq1, y_2 \geq2, ...,y_n \geq n$. So we are done.
12.05.2006 17:46
It is easy proved by induktion. Let $f_0(x)=f(x)$ and $f_i(x)=f_{i-1}(x)$ if $f_{i-1}(i)=i$, else exist k>i $f_{i-1}(k)=i,f_{i-1}(i)=m>i$ we denote $f_i(x)=f_{i-1}(x),x\not=k,i, f_i(i)=i,f_i(k)=m$. Let \[ S_n(f)=\sum_{k=1}^n \frac{f(k)}{k^2} \]. It is easy to show, that $S_n(f_i)\ge S(f_{i+1})$.
03.09.2009 01:19
We just have to use the Rearrangement Inequality.
05.03.2010 18:05
orl wrote: Let $ f$ be an injective function from $ {1,2,3,\ldots}$ in itself. Prove that for any $ n$ we have: $ \sum_{k = 1}^{n} f(k)k^{ - 2} \geq \sum_{k = 1}^{n} k^{ - 1}.$ Let $ f(k)=a_k$, where $ a_k \in \{1,2,3,...\}=\mathbb{N}$. \[ \sum_{k=1}^{n} f(k)k^-2 =\sum_{k=1}^n {\frac{a_k}{k^2}} \geq \sum_{k=1}^{n}{\frac{1}{k}}\] By AM-GM, for each $ k\in \mathbb {N}$ we have: \[ \frac{a_k}{k^2} +\frac{1}{a_k} \geq \frac{2}{k}\] \[ \implies \sum_{k=1} ^n {\frac{a_k}{k^2}} +\sum_{k=1}^n {\frac{1}{a_k}} \geq 2\sum_{k=1}^n {\frac{1 }{k}}\] Therefore, it is enough to prove that: \[ \frac{1}{1} +\frac{1}{2} +... +\frac{1}{n} \geq \frac{1}{a_1} +\frac{1}{a_2} +...+\frac{1}{a_n}\] But this is obviously true because all $ a_i$ numbers are different natural numbers.
14.04.2013 17:18
Very simple question. The only trick is in realising that the rearrangement inequality can be used and then seeing that positive integers are greater than 1.
05.05.2014 20:27
lemma $\sum_{r=1}^{n} x_r y_r =X_n y_n -\sum_{r=1}^{n-1}X_{r} (y_{r+1} -y_r)$ where $X_r= x_1+x_2+\cdots+x_r$ The proof is trivial and it is kind of integration by parts. Let, $F(k)=\sum_{k=1}^{k} f(k) \ge \frac{k(k+1)}{2}$.so from the lemma we get, \begin{align*} \sum_{k=1}^{n} \frac{f(k)}{k^{2}}& = \frac{F(n)}{n^{2}} -\sum_{k=1}^{n-1} F(n-1) \left(\frac{1}{(k+1)^2} -\frac{1}{k^2}\right)\\ & \ge \frac{n+1}{2n} -\sum_{k=1}^{n-1} \frac{k(k+1)}{2}. \frac{-(2k+1)}{k^2(k+1)^2}\\ & =\frac{n+1}{2n} +\frac{1}{2}\sum_{k=1}^{n-1} \frac{2k+1}{k(k+1)}\\ & =\frac{1}{2}+\frac{1}{2n}+\frac{1}{2} \sum_{k=1}^{n-1} \left(\frac{1}{k}+ \frac{1}{k+1}\right)\\ & = \frac{1}{2} \left(\sum_{k=1}^{n} \frac{1}{k} +\sum_{k=0}^{n-1} \frac{1}{k+1}\right)\\ & = \sum_{k=1}^{n} \frac{1}{k} \end{align*}
05.05.2014 20:31
Hmmm ... your lemma is just Abel's summation formula. Let's call a rabbit a rabbit.
05.05.2014 20:59
orl wrote: Let $f$ be an injective function from ${1,2,3,\ldots}$ in itself. Prove that for any $n$ we have: $\sum_{k=1}^{n} f(k)k^{-2} \geq \sum_{k=1}^{n} k^{-1}.$ Assume to sequence $f(x_1),f(x_2),\cdots,f(x_k)$ where $x_k$'s are the permutation of $\{1,2,\cdots,n\}$ and $\left\{\frac{1}{k^2}\right\}$.They are similar.So applying chebyshev inequality, \begin{align*}\sum_{k=1}^{n} \frac{f(k)}{k^2}& \ge \frac{1}{n} \sum_{k=1}^{n} f(k). \sum_{k=1}^{n} \frac{1}{k^2}\\ & \ge \frac{1}{n}.\frac{n(n+1)}{2}. \frac{1}{n} \left(\sum_{k=1}^{n} \frac{1}{k}\right)^{2}\\ & \ge \frac{n(n+1)}{2n^2}.\sum_{k=1}^{n}\frac{1}{k}.\frac{n^2}{1+2+\cdots+n}\\ & \ge \sum_{k=1}^{n}\frac{1}{k}\end{align*}
06.08.2014 14:49
Also we can use: $\frac{f(k)}{k^2}\geq \frac{2}{k}-\frac{1}{f(k)}$
22.11.2014 14:01
Let $a_1,a_2,\dots,a_n$ be a sequence of distinct positive integers such that $f(i)=a_i$. Note that $\sum\limits_{k=1}^n a_k^{-1}\le\sum\limits_{k=1}^n k^{-1}$ since all $a_k$ are distinct positive integers. Cauchy Schwarz yields \[\left(\sum\limits_{k=1}^n a_k^{-1}\right)\left(\sum\limits_{k=1}^n a_k k^{-2}\right)\ge\left(\sum\limits_{k=1}^nk^{-1}\right)^2.\] Dividing by $\sum\limits_{k=1}^n a_k^{-1}$ yields \[\sum\limits_{k=1}^n a_k k^{-2}\ge\frac{\left(\sum\limits_{k=1}^nk^{-1}\right)\left(\sum\limits_{k=1}^nk^{-1}\right)}{\sum\limits_{k=1}^n a_k^{-1}}\implies \sum\limits_{k=1}^n a_k k^{-2}\ge\left(\sum\limits_{k=1}^nk^{-1}\right)\cdot\frac{\left(\sum\limits_{k=1}^nk^{-1}\right)}{\sum\limits_{k=1}^n a_k^{-1}}.\] Since $\sum\limits_{k=1}^n a_k^{-1}\le\sum\limits_{k=1}^n k^{-1}$, then $\frac{\left(\sum\limits_{k=1}^nk^{-1}\right)}{\sum\limits_{k=1}^n a_k^{-1}}\ge 1$. Thus, we have $\sum\limits_{k=1}^n a_k k^{-2}\ge\sum\limits_{k=1}^nk^{-1}$ as desired.
17.02.2016 17:58
We can simply put the R.H.S as $1/k$ to $k/k^2$ and use rearrangement inequality it's done in like two lines. The R.H.S is a scalar product of two sequences sorted in the opposite way. The R.H.S is a scalar product of rearranged sequences. Q.E.D
17.02.2016 18:07
What's an injective function?
18.02.2016 04:50
al_wang wrote: What's an injective function? Let's say there is a function going from $X->Y$ Then, imagine arrows flying from the $X$ to $Y$ It's an injective function when the arrow from Xs is shot at different Ys, which mean than one Y cannot be shot two times Thus, if $f(x1)$ is unequal to $f(x2)$, then also $x1$ and $x2$ is different
10.04.2018 20:34
Sorry for reviving this thread, but couldn't resist posting my solution to this problem. Solution Clearly $f$ being injective implies that: $\sum \dfrac{f(k)}{k^2} = \sum \dfrac {a_k}{k^2} $ where $a_k = f(k) $. Thus, the inequality to prove is : $ \sum \dfrac {a_k}{k^2} \ge \sum \dfrac {1}{k^2} $ Now consider a permutation $(b_1,b_2, \dots , b_n)$ of ${a_k}$ such that $b_i \le b_j \forall i \le j $ Therefore by rearrangement inequality $ \sum \dfrac {a_k}{k^2} \ge\sum \dfrac {b_k}{k^2}$ Claim: $\sum \dfrac{b_k}{k^2} \ge \sum \dfrac {1}{k^2} $ Proof: this is trivial since $ b_1 < b_2 < \dots < b_n$ and $b_1 \ge 1 $ Thus, $b_k \ge k$ for any $ k \in { 1,2,\dots,n} $
08.06.2018 15:22
Electron_Madnesss wrote: Proof: this is trivial since $ b_1 \le b_2 \le \dots \le b_n$ and $b_1 \ge 1 $ It should be $< $, not $\leq $, but other than that good formalisation. This is the easiest IMO I have ever seen! It's just Rearrangement.
21.03.2021 05:28
We may use induction as well. If for all permutations of $S=\{1,2,...,n\}$ we have the inequality is satisfied then we can show that for all permutations of $S_1=S\cup\{n+1\}$ it will be satisfied. Let, $\sigma_{f,n}=\sum_{k=1}^{n}\frac{f(k)}{k^2}\geq \sum_{k=1}^n \frac{1}{k}=\sigma_{0}(n)$ for all bijective functions $f:S\rightarrow S$. So, $\sigma_{f,n}+\frac{n+1}{(n+1)^2}\geq \sigma_{0}(n+1)$ Now, we interchange any $f(k)$ with $n+1$. $\sigma_{f,n}$ will be changed by $\Delta=(n+1-f(k))(\frac{1}{k^2}-\frac{1}{(n+1)^2}) >0$ as $f(k)<n+1$. Hence, $\sigma_{f,n+1}\geq \sigma_{0}(n+1)$. As, the inequality is true for all permutations for $n=2$, ($\sigma_{f,2}=\{9/4, 3/2\}$ and $\sigma_{0}(2)=3/2$ ) so is true for all $n$.
27.06.2022 22:39
Let $(b_1,b_2,\ldots,b_n)$ be the permutation of $(a_1,a_2,\ldots,a_n)$ such that $b_1\le b_2\le\ldots\le b_n$. Thus by the rearrangement inequality we get that $$\sum_{k=1}^{n}\frac{a_k}{k^2}\ge\sum_{k=1}^{n}\frac{b_k}{k^2}$$Clearly $b_1\ge 1,b_2\ge 2,\ldots,b_n\ge n$, so $$\sum_{k=1}^{n}\frac{b_k}{k^2}\ge\sum_{k=1}^{n}\frac{k}{k^2}=\sum_{k=1}^{n}\frac{1}{k}$$