We have $0\le x_i<b$ for $i=0,1,\ldots,n$ and $x_n>0,x_{n-1}>0$. If $a>b$, and $x_nx_{n-1}\ldots x_0$ represents the number $A$ base $a$ and $B$ base $b$, whilst $x_{n-1}x_{n-2}\ldots x_0$ represents the number $A'$ base $a$ and $B'$ base $b$, prove that $A'B<AB'$.
Note that for all integers $ 0 \le k \le n$,
\[ x_n a^n x_k b^k \ge x_n b^n x_k a^k , \]
with equality only when $ x_k= 0$ or $ k=n$. In particular, we have strict inequality when $ k=n-1$. In summation, this becomes
\[ x_n a^n \sum_{k=0}^n x_k b^k > x_n b^n \sum_{k=0}^n x_k a^k, \]
i.e.,
\[ x_n a^n \cdot B > x_n b^n \cdot A . \]
Then
\[ A'B = (A- x_n a^n)B = AB - x_n a^nB < AB - x_n b^n A = A(B- x_n b^n) = AB', \]
as desired. $ \blacksquare$