Prove that 0≤yz+zx+xy−2xyz≤727, where x,y and z are non-negative real numbers satisfying x+y+z=1.
Problem
Source: IMO 1984, Day 1, Problem 1
Tags: Inequality, three variable inequality, calculus, maximization, IMO, IMO 1984, Hi
12.11.2005 00:09
http://www.mathlinks.ro/Forum/viewtopic.php?t=33007 http://www.mathlinks.ro/Forum/viewtopic.php?t=50902 Darij
14.11.2012 02:53
Let x,y and z are non-negative real numbers satisfying x+y+z=1.Prove that 0≤yz+zx+xy−λxyz≤9−λ27.(0<λ≤94) See http://www.artofproblemsolving.com/Forum/viewtopic.php?f=52&p=2847133#p2847133
24.01.2014 05:04
Easily solved using Lagrange multipliers and then little manipulation
17.09.2017 12:58
17.09.2017 13:22
For a,b,c>0 real numbers, we have: (a+b+c)(ab+bc+ca)−2abc≤727(a+b+c)3 ; Greetings!
19.09.2017 08:09
How do I prove this inequality ? a^n+1 - 1/(a^n+1) > (n+1/na)(a^n - 1/a^n)
17.01.2018 23:29
0≤yz+zx+xy−2xyz≤727 since x+y+z=1 we can renote x=a(a+b+c) , y=b(a+b+c) , and z=c(a+b+c) with no restrictions over a , b and c easy computations result 0≤27(a+b+c)(ab+bc+ca)−54abc≤7(a+b+c)3 the left part is easy since 6abc≤ab(a+b)+bc(b+c)+ca(a+c) now , for the right part we can just use Schur's inequality : ab(a+b)+bc(b+c)+ca(a+c)≤a3+b3+c3+3abc and the fact that ab(a+b)+bc(b+c)+ca(a+b)≤2(a3+b3+c3) PS: i know this is not the best solution
04.12.2019 14:42
orl wrote: Prove that 0≤yz+zx+xy−2xyz≤727, where x,y and z are non-negative real numbers satisfying x+y+z=1. MariusStanean: Let z=min , then yz+zx+xy-2xyz=xy(1-2z)+z-z^2\ge 0 yz+zx+xy-2xyz\le (1-2z)\frac{(x+y)^2}{4}+z-z^2=\frac14+\frac{z^2(1-2z)}{4}\le \frac14+\frac14\left(\frac{z+z+1-2z}{3}\right)^3=\frac{7}{27}
08.05.2020 02:18
Lower bound: xy+zx+zx-2xyz = (xy+yz+zx)(x+y+z)-2xyz = x^2y+x^2z+xy^2+xz^2+yz^2+y^2z+xyz \geq 0 because x,y,z are nonnegative Upper bound: Since x+y+z=1 notice that yz+zx+xy-2xyz = (\frac{1}{4})(1-2x)(1-2y)(1-2z) + (\frac{1}{4}) By AM GM (1-2x)(1-2y)(1-2z) \leq \frac{1}{27} Therefore yz+zx+xy-2xyz \leq (\frac{1}{4})(\frac{1}{27}) + \frac{1}{4} = \frac{7}{27}. \blacksquare
16.03.2022 16:58
Claim 1: xy+yz+zx-2xyz \geq 0 Proof. x+y+z=1 \implies x,y,z \leq 1 \implies xyz \leq xy \text{ and } xyz \leq yz. But now, xy+yz+xz \geq 2xyz and the claim follows. \square Claim 2: xy+yz+zx-2xyz \leq \frac{7}{27} Proof. Note that xy+yz+xz-2xyz=\frac{(1-2x)(1-2y)(1-2z)}{4} +\frac{1}{4}. Since x+y+z=1, we have two cases: a) WLOG, x > \frac{1}{2} and y,z \leq \frac{1}{2} \implies \frac{(1-2x)(1-2y)(1-2z)}{4} +\frac{1}{4} \leq \frac{1}{4} =\frac{7}{28} <\frac{7}{27}. b) x,y,z \leq \frac{1}{2} \implies \text{ by AG-GM, } (1-2x)(1-2y)(1-2z) \leq \frac{(3-2(x+y+z))^3}{27}=\frac{1}{27}<\frac{7}{27}. And we're done. \square
04.07.2022 04:02
Homogenize; then, this lemma instantly kills the problem. To make this post more than one line long, we present an equally stupid smoothing solution for the maximum. WLOG z \leq \frac 12. Observe that \begin{align*} xy+yz+zx-2xyz &= z(1-z)+(1-2z) xy \\ &\leq (1-z)+(1-2z)\left(\frac{1-z}2\right)^2 \\ &\leq \frac 7{27} \end{align*}by taking the derivative with respect to z. Yay.
04.07.2022 17:10
Good! Nice!
17.04.2023 20:50
I will show the upper bound. Since the inequality is symmetric, W.L.O.G. let x\leq y\leq z. Since x\leq \frac{1}{3} <\frac{1}{2} we have 1-2x>0, then \begin{align*} xy+zx+yz-2xyz &= x(y+z)+yz(1-2x) \\ &\leq x(1-x)+\frac{(1-x)^2}{4}(1-2x) \\ &= \frac{1+x^2(1-2x)}{4} \\ &\leq \frac{1+(\frac{x+x+1-2x}{3})^3}{4} \\ &= \frac{7}{27}. \end{align*}with equality at y=z and x=1-2x, i.e. at x=y=z=\frac{1}{3}.
17.04.2023 21:59
Maybe you can do the lower bound like this: Use t+1/t\ge 2. If none of x,y,z are zero we can divide out by xyz and note x+1/x+y+1/y+z+1/z\ge 6. If x=0, say, then the result is obvious.