An $n$-mino is a connected figure made by connecting $n$ $1 \times 1 $ squares. Two polyminos are the same if moving the first we can reach the second. For a polymino $P$ ,let $|P|$ be the number of $1 \times 1$ squares in it and $\partial P$ be number of squares out of $P$ such that each of the squares have at least on edge in common with a square from $P$. (a) Prove that for every $x \in (0,1)$:\[\sum_P x^{|P|}(1-x)^{\partial P}=1\] The sum is on all different polyminos. (b) Prove that for every polymino $P$, $\partial P \leq 2|P|+2$ (c) Prove that the number of $n$-minos is less than $6.75^n$. Proposed by Kasra Alishahi
Problem
Source: Iran 3rd round 2014 - Combinatorics exam problem 5
Tags: geometry, geometric transformation, rotation, combinatorics unsolved, combinatorics