Let $P$ be a regular $2n$-sided polygon. A rhombus-ulation of $P$ is dividing $P$ into rhombuses such that no two intersect and no vertex of any rhombus is on the edge of other rhombuses or $P$. (a) Prove that number of rhombuses is a function of $n$. Find the value of this function. Also find the number of vertices and edges of the rhombuses as a function of $n$. (b) Prove or disprove that there always exists an edge $e$ of $P$ such that by erasing all the segments parallel to $e$ the remaining rhombuses are connected. (c) Is it true that each two rhombus-ulations can turn into each other using the following algorithm multiple times? Algorithm: Take a hexagon -not necessarily regular- consisting of 3 rhombuses and re-rhombus-ulate the hexagon. (d) Let $f(n)$ be the number of ways to rhombus-ulate $P$. Prove that:\[\Pi_{k=1}^{n-1} ( \binom{k}{2} +1) \leq f(n) \leq \Pi_{k=1}^{n-1} k^{n-k} \]
Attachments: