Find all functions $f$ defined on the non-negative reals and taking non-negative real values such that: $f(2)=0,f(x)\ne0$ for $0\le x<2$, and $f(xf(y))f(y)=f(x+y)$ for all $x,y$.
Problem
Source: IMO 1986, Day 2, Problem 5
Tags: function, algebra, functional equation, IMO, IMO 1986, david monk
11.11.2005 22:39
Just a note: generalization of this problem appeared in IMC 2000 as problem 5. http://www.mathlinks.ro/Forum/viewtopic.php?p=357658#p357658
27.12.2005 00:47
orl wrote: Find all functions $f$ defined on the non-negative reals and taking non-negative real values such that: $f(2)=0,f(x)\ne0$ for $0\le x<2$, and $f(xf(y))f(y)=f(x+y)$ for all $x,y$. Can someone confirm this? The Engel book says no solution...
27.12.2005 12:49
More or less the same problem has been given to us in the 5th German TST 2004, only made a bit harder by stating that $f\left(x\right)\neq 0$ holds for all 0 < x < 2 (instead of $0\leq x<2$), so that we had to prove that $f\left(0\right)\neq 0$ by an additional argument. Towersfreak2006's solution is correct, and is more or less identic with the solution I gave on the exam. Engel is sometimes really strange about giving solutions in his book, so "no solution" should neither mean that the problem is too hard, nor that it is too easy. But there is always MathLinks, Kalva, ... Darij
15.02.2008 21:22
Consider $ 0\leq y < 2$. \[ x: =\frac{2}{f(y)} \Rightarrow f(\frac{2}{f(y)}+y)=f(2)f(y)=0 \Rightarrow \frac{2}{f(y)}+y \geq 2 \Rightarrow f(y) \leq \frac{2}{2-y} \\ x: =(2-y) \Rightarrow f((2-y)f(y))f(y)=0 \Rightarrow (2-y)f(y)\geq 2 \Rightarrow f(y) \geq \frac{2}{2-y}\]
21.02.2008 14:50
Let's find all $ f: [0,\infty)\to [0,\infty)$ with $ (*)$ $ f(xf(y))f(y) = f(x + y)$ for all $ x,y\ge 0$ First assume $ f(x) = 0$ for some $ x\ge 0$ and take $ c: = \inf\{x\ge 0: f(x) = 0\}\ge 0$. Then for all $ z > c$ we find $ y < z$ with $ f(y) = 0$, and for $ x = z - y$ in $ (*)$ we get $ f(z) = f(x + y) = f(xf(y))f(y) = 0$. This gives $ f(x) = 0$ for all $ x > c$ and $ f(x)\not = 0$ for all $ 0\le x < c$. Then for all $ 0\le y < c$ we have $ f(y)\not = 0$ and $ x > c - y\Rightarrow f(x + y) = 0 \Rightarrow f(xf(y)) = 0 \Rightarrow f(y)\ge {c\over x}$ and $ 0 < x < c - y\Rightarrow f(x + y)\not = 0 \Rightarrow f(xf(y))\not = 0 \Rightarrow f(y)\le {c\over x}$ for all $ x$. So $ f(y)\ge \sup_{x > c - y}{c\over x} = {c\over c - y}$ and $ f(y)\le \inf_{0 < x < c - y}{c\over x} = {c\over c - y}$ for all $ 0\le y < c$. This gives $ f(x) = {c\over c - x}$ for all $ 0\le x < c$, which leaves to find $ f(c)$. Assume $ f(c)\not = 0$. Then for all $ x > 0$ and $ y = c$ in $ (*)$ we get $ f(xf(c))f(c) = f(x + c) = 0\Rightarrow f(xf(c)) = 0\Rightarrow xf(c)\ge c$. So $ c\le \inf_{x > 0}xf(c) = 0$, and therefore $ c = 0$ and $ f(0)\not = 0$. But $ x = y = 0$ in $ (*)$ gives $ f(0)^2 = f(0)\Rightarrow f(0) = 1$. So $ f(x) = \{ {1\text{ for }x = 0\atop 0\text{ for }x\not = 0}$. Otherwise $ f(c) = 0$ and $ f(x) = \{ {{c\over c - x}\text{ for }0\le x < c\atop 0\text{ for }x\ge c}$ for some $ c\ge 0$. (This is $ f\equiv 0$ for $ c = 0$) Finally assume $ f(x) > 0$ for all $ x\ge 0$. If $ f(y) > 1$ for some $ y\ge 0$, then for $ x = {y\over f(y) - 1}\ge 0$ we have $ xf(y) = x + y$, and $ (*)$ gives $ 1 < f(y) = {f(x + y)\over f(xf(y))} = 1$. Contradiction! So $ f(x)\le 1$ for all $ x\ge 0$, and $ (*)$ gives $ f(y)\ge f(xf(y))f(y) = f(x + y)$ for all $ x,y\ge 0$. So $ f$ is monotonically decreasing. Assume $ f(a) = f(b)$ for some $ 0\le a < b$. Then by $ (*)$ we get $ f(x + a) = f(xf(a))f(a) = f(xf(b))f(b) = f(x + b)$ for all $ x\ge 0$. For $ x = n(b - a)$ we get $ f(n(b - a) + a) = f(n(b - a) + b) = f((n + 1)(b - a) + a)$ for all $ n\in\mathbb{N}_0$, and so by induction $ f(a) = f(n(b - a) + a)$ for all $ n\in\mathbb{N}_0$. But then for all $ x\ge a$ we find $ n\in\mathbb{N}_0$ with $ x < n(b - a) + a$, and then $ f(a)\ge f(x)\ge f(n(b - a) + a) = f(a)$. So $ f(x) = f(a)$ for all $ x\ge a$, and for all $ y\ge 0$ we can find $ x > 0$ with $ xf(y)\ge a$ and $ x + y\ge a$, and using $ (*)$ we get $ f(y) = {f(x + y)\over f(xf(y))} = {f(a)\over f(a)} = 1$. This gives $ f\equiv 1$, or otherwise $ f$ is strictly monotonically decreasing. Assume the latter. Then replacing $ x$ by $ {x\over f(y)}$ in $ (*)$ we get $ f(x)f(y) = f({x\over f(y)} + y)$ for all $ x,y\ge 0$, and using the symmetry of the left side we get $ f({x\over f(y)} + y) = f({y\over f(x)} + x)$ and $ {x\over f(y)} + y = {y\over f(x)} + x$ for all $ x,y\ge 0$. Then for $ y = 1$ and $ c: = {1\over f(1)} - 1\ge 0$ we get $ f(x) = {1\over 1 + cx}$ for all $ x\ge 0$. (This is $ f\equiv 1$ for $ c = 0$) We therfore get $ 3$ types of solutions of $ (*)$: $ f(x) = \{ {1\text{ for }x = 0\atop 0\text{ for }x\not = 0}$ or $ f(x) = \{ {{c\over c - x}\text{ for }0\le x < c\atop 0\text{ for }x\ge c}$ or $ f(x) = {1\over 1 + cx},x\ge 0$ for some $ c\ge 0$. Easy to see, that these are legit.
26.12.2009 17:54
orl wrote: Find all functions $ f$ defined on the non-negative reals and taking non-negative real values such that: $ f(2) = 0,f(x)\ne0$ for $ 0\le x < 2$, and $ f(xf(y))f(y) = f(x + y)$ for all $ x,y$. Looking at this old IMO problem I get a strange result. If I put $ y=2$ in the property $ f(xf(y))f(y) = f(x + y)$ this implies $ \implies f(x+2)=0$ for all $ x\ge0$. This should imply that $ f(x)=0$ for all $ x\ge0$. Where do I get wrong? The problem statement is correct?
26.12.2009 18:02
prester wrote: orl wrote: Find all functions $ f$ defined on the non-negative reals and taking non-negative real values such that: $ f(2) = 0,f(x)\ne0$ for $ 0\le x < 2$, and $ f(xf(y))f(y) = f(x + y)$ for all $ x,y$. Looking at this old IMO problem I get a strange result. If I put $ y = 2$ in the property $ f(xf(y))f(y) = f(x + y)$ this implies $ \implies f(x + 2) = 0$ for all $ x\ge0$. This should imply that $ f(x) = 0$ for all $ x\ge0$. Where do I get wrong? The problem statement is correct? No : $ f(x + 2) = 0$ for all $ x\ge 0$ implies $ f(x)=0$ $ \forall x\ge 2$ and not $ f(x) = 0$ for all $ x\ge 0$ So the required function is non zero on $ [0,2)$ and zero on $ [2,+\infty)$
26.12.2009 18:28
pco wrote: prester wrote: orl wrote: Find all functions $ f$ defined on the non-negative reals and taking non-negative real values such that: $ f(2) = 0,f(x)\ne0$ for $ 0\le x < 2$, and $ f(xf(y))f(y) = f(x + y)$ for all $ x,y$. Looking at this old IMO problem I get a strange result. If I put $ y = 2$ in the property $ f(xf(y))f(y) = f(x + y)$ this implies $ \implies f(x + 2) = 0$ for all $ x\ge0$. This should imply that $ f(x) = 0$ for all $ x\ge0$. Where do I get wrong? The problem statement is correct? No : $ f(x + 2) = 0$ for all $ x\ge 0$ implies $ f(x) = 0$ $ \forall x\ge 2$ and not $ f(x) = 0$ for all $ x\ge 0$ So the required function is non zero on $ [0,2)$ and zero on $ [2, + \infty)$ Ok pco, I got a stupid result. $ x=y-2 \ge 0$ $ \implies f(y)=0 \;\;\;\forall y\ge 2$ Thanks for your quick remark
10.10.2018 06:23
05.01.2019 09:54
Taking $y=2$ gives $f(x+2)=0 \forall x\ge 0$, or equivalently $f(x)=0 \forall x\ge 2$. Taking $y=2-x$ for $0\le x<2$ yields $$f(xf(2-x))f(2-x)=f(2)=0$$Since $0<2-x\le 2$, we must have $f(xf(2-x))=0$, which forces $$xf(2-x)\ge 2\implies f(x)\ge \frac{2}{2-x}\forall 0\le x<2.$$Now taking $x=2/f(y)$, for $0\le y<2$ gives, $$f(y+2/f(y))=f(2)f(y)=0\implies y+2/f(y)\ge 2.$$Thus, $$f(y)\le \frac{2}{2-y}\forall 0\le y<2$$Hence, this forces $f(x)=2/(2-x)$ for $0\le x<2$, giving a final answer of \[ f(x)=\begin{cases} 0 & \text{ if }x \ge 2 \\ \frac{2}{2-x} & \text{ if } 0 \le x < 2 . \end{cases} \]
09.07.2021 13:08
Solved with L567 - posting merely for storage and hoping that we get a P5 as easy as this at this year's IMO
23.08.2021 01:55
30.11.2021 04:24
The only function is $$f(x) = \begin{cases} \frac 2{2-x} &0\leq x<2 \\ 0 & x\geq 2.\end{cases}$$First the following claim: Claim. $f(x) = 0$ for $x \geq 2$. Let $y=2$, from where we obtain $f(x+2) = 0$ for all $x$ in the domain of $f$, or all $x \geq 0$. Hence $f(x) = 0$ for $x\geq 2$. $\blacksquare$ Now set $x = 2-y$ for $x, y > 0$, such that $$f((2-y)f(y))f(y) = f(2) = 0.$$By the third condition, $f(y) \neq 0$, so $$f((2-y)f(y)) = 0 \iff f(y)(2-y) \geq 2.$$This means that $f(y) \geq \frac 2{2-y}$ for all $0 \leq y < 2$. On the other hand, set $x = 2-\varepsilon - y$. Because $f(2-\varepsilon) \neq 0$, we know that $$f((2-\varepsilon-y)f(y)) \neq 0 \iff f(y)(2-\varepsilon-y) < 2.$$This means that $f$ is bounded $$\frac 2{2-\varepsilon-x} < f(x) \leq \frac 2{2-x}$$for all $0\leq x < 2$. It follows that $f(x) = \frac 2{2-x}$ for all $0\leq x<2$, as required. It suffices to verify this function for $x, y < 2$ and $x+y<2$. Indeed, the LHS equals $$f\left(\frac {2x}{2-y}\right) \cdot \frac 2{2-y} = \frac 2{2-\frac{2x}{2-y}} \cdot \frac 2{2-y} = \frac 2{2-(x+y)}.$$
30.11.2021 06:21
Let $P(x,y)$ denote the assertion. Claim: $f(x)=0$ for $x\ge2$. $P(x,2): f(x+2)=0$, which proves our claim. Claim: $f(x)\ge\frac{2}{2-x}$ for all $0\ge x<2$. Proof: For $x<2$, $P(2-x,x): f((2-x)f(x))f(x)=0$. Since $f(x)>0$, \[f((2-x)f(x))=0\implies (2-x)f(x)\ge 2\implies f(x)\ge \frac{2}{2-x}.\] $P(0,x): f(0)f(x)=f(x)$. If $x<2$, we divide both sides by $f(x)$ and get $f(0)=1$. $P(\frac{2}{f(x)},x<2):0=f(\frac{2}{f(x)}+x)$. Then \[\frac{2}{f(x)}+x\ge 2\implies \frac{2}{f(x)}\ge 2-x\implies \frac{2}{2-x}\ge f(x)\] So $f(x)=\frac{2}{2-x}\forall x<2$. We claim that the only solution, $$\boxed{f(x) = \begin{cases} \frac 2{2-x} &0\leq x<2 \\ 0 & x\geq 2.\end{cases}}$$works. Proof: We prove this with casework. Case 1: $x,y\ge 2$. Then $0=0$, which is true. Case 2: $x\ge 2, y<2$. We have $f(y)=\frac{2}{2-y}\ge1$. So $xf(y)\ge 2$. Thus, we get $0=0$, which is true. Case 3: $x<2, y\ge2$. Then we get $0=0$. Case 4: $x,y<2$. Then we have $\frac{2f(\frac{2x}{2-y})}{2-y}=f(x+y)$. Subcase 4.1: $x+y\ge 2$. Then $x\ge 2-y\implies \frac{2x}{2-y}\ge 2$. So $0=0$. Subcase 4.2: $x+y< 2$. Then $x< 2-y\implies \frac{2x}{2-y}<2$. So we have \[\frac{\frac{4}{2-\frac{2x}{2-y}}}{2-y}=\frac{4}{(2-y)(2-\frac{2x}{2-y})}=\frac{4}{4-2y-2x}=\frac{2}{2-x-y},\]which is true.
30.11.2021 20:55
Label the conditions as follows: AoPS wrote: (i) $f(xf(y)) f(y) = f(x + y)$ for all $x$, $y \ge 0$, (ii) $f(2) = 0$, (iii) $f(x) \neq 0$ for $0 \le x < 2$. Let $P(x,y)$ denote assertion $(\text i)$. $P(x,2)\Rightarrow f(x)=0\forall x\ge2$ by $(\text{ii})$, so $f(x)=0\Leftrightarrow x\ge2$ by $(\text{iii})$. Let $x\in[0,2)$, then $f(x)\ne0\ne f(2-x)$ and: $P(2-x,x)\Rightarrow f((2-x)f(x))=0\Rightarrow (2-x)f(x)\ge2\Rightarrow f(x)\ge\frac2{2-x}$ $P\left(\frac2{f(x)},x\right)\Rightarrow f\left(\frac2{f(x)}+x\right)=0\Rightarrow\frac2{f(x)}+x\ge2\Rightarrow f(x)\le\frac2{2-x}$ Thus $\boxed{f(x)=\begin{cases}\frac2{2-x}&\text{if }x\in[0,2)\\0&\text{if }x\ge2\end{cases}}$, which works by simple casework.
01.02.2022 22:03
17.05.2022 15:26
Let $P(x,y)$ denote the assertion $f(xf(y))f(y)=f(x+y)~\forall x,y \geq 0.$ $P(x,2)\implies f(x)=0 ~\forall x\geq 2,$ which works. $P(0,0)\implies f(0)=1$ or $f(0)=0,$ the latter is false. For $x\in (0,2),$ we have $f(x)\geq 2/(2-x),$ by $P(2-x,x).$ Assume $f(x)>2/(2-x)$. $\exists u,v\in (0,2): f(u)>2/(2-u)$ and $f(v)=2/(2-u).$ Case 1. $v<u\implies f(v)=2/(2-v)\implies u=v,$ contradiction. Case 2. $v>u.$ But then, $P(2-v,u)\implies u\geq v,$ contradiction. Thus the solution for $x\in [0,2)$ is $f(x)=2/(2-x),$ which works.
23.02.2024 17:58
Alright, I love this problem! Usual tricks worked! phew! Solution: Denote $P(x,y)$ as the assertion to the functional equation. The solution will be divided into two parts. Answer and Verification The answer is \[f(x) = \begin{cases} \frac{2}{2-x} & \text{for all $x \in [0,2)$} \\ 0 & \text{for all $x \ge 2$.} \end{cases}\]We will now show that it works. Consider two cases based on size of $x+y$. Say $x+y < 2$, then clearly $\frac{2x}{2-y}<2$. Plugging everything back, we get that it works. If $x+y >2$, then note that if $y \ge 2$ then we're already done. So, assume $y \le 2$. Since $x+y > 2 \implies \frac{2x}{2-y}>2$, we find a tautology which verifies the solution. Uniqueness of Solution Start with $P(x,2)$ to get that $f(x) = 0$ for $x \ge 2$. $P(k,2)$ for $k \in [0,2]$ gives $f\left(2f(k) \right) = 0$. Due to problem condition, we must have $2f(k) \ge 2 \iff f(k) \ge 1$. From here, apply the cancellation trick and substitute $P\left(x,\frac{kf(k)}{f(k)-1} \right)$. This yields \[f\left( \frac{kf(k)}{f(k)-1} \right) = 0 \iff \frac{kf(k)}{f(k)-1} \ge 2 \iff f(k) \le \frac{2}{2-k}. \tag{1} \label{1} \]Here's the final blow! Consider $P(k,2-k)$. This would yield \[f\left( kf(2-k) \right) = 0 \iff kf(2-k) \ge 2 \iff f(k) \ge \frac{2}{2-k}. \tag{2} \label{2}\]Finally, on combining $(1)$ and $(2)$, we get a strict equality which concludes the solution. $\blacksquare$
21.11.2024 23:16
We claim the only such function is \[\boxed{f(x)=\begin{cases} \dfrac{2}{2-x} &\text{if }0\leq x<2 \\ 0&\text{if }2\leq x \\ \end{cases}}.\]We first show this function satisfies the conditions. We can see that $f(2)=0$ and $f(x)\neq 0$ for all $0\leq x< 2.$ If $y\geq 2,$ then since $x+y\geq 2,$ $f(x(f(y))f(y)=0=f(x+y).$ If $0\leq y <2,$ then $f(xf(y))f(y)=f\left(\dfrac{2x}{2-y}\right)f(y).$ If we also have $\dfrac{2x}{2-y}\geq 2,$ then $\dfrac{x}{2-y}\geq 1,$ so $x+y\geq 2,$ so $f(xf(y))f(y)=f\left(\dfrac{2x}{2-y}\right)f(y)=0=f(x+y),$ and if $x+y\geq 2,$ then we have $x\geq 2-y,$ so $\dfrac{2x}{2-y}\geq 2,$ so $f(x+y)=0=f\left(\dfrac{2x}{2-y}\right)f(y)=f(xf(y))f(y).$ As such, $f$ satisfies all of the conditions of the problem. We now prove that this is the only solution to the functional equation. Denote $P(x,y)$ as the condition that $f(xf(y))f(y)=f(x+y).$ From $P(x,2)$ for $x\geq 0,$ we have $f(xf(2))f(2)=0=f(x+2),$ so $f(y)=0$ for all $y\geq 2.$ From $P(2-x,x)$ for $0\leq x<2,$ we have that $f((2-x)f(x))f(x)=f(2)=0,$ so since $f(x)\neq 0,$ we have $f((2-x)f(x))=0,$ so $(2-x)f(x)\geq 2,$ and $f(x)\geq \dfrac{2}{2-x}.$ From $P\left(\dfrac{2}{f(x)},x\right)$ for $0\leq x<2$ (which is valid as $f(x)\neq 0$), we get $f\left(\dfrac{2}{f(x)}\cdot f(x)\right)f(x)=f(2)f(x)=0=f\left(\dfrac{2}{f(x)}+x\right),$ so $\dfrac{2}{f(x)}+x\geq 2,$ so $\dfrac{2}{f(x)}\geq 2-x,$ so $\dfrac{2}{2-x}\geq f(x)\geq \dfrac{2}{2-x},$ so $f(x)=\dfrac{2}{2-x}$ for all $0\leq x <2.$ As such, the only such function is $f(x)=\begin{cases} \dfrac{2}{2-x} &\text{if }0\leq x<2 \\ 0&\text{if }2\leq x \\ \end{cases},$ as desired. $\Box$
02.02.2025 07:45
Note that $f(x) = 0 \forall x \ge 2$. Now the idea is to take $x = \frac{2}{f(y)} - \epsilon$ for epsilon small to get one bound (in particular, consider the limit as epsilon tends to zero), and $x = \frac{2}{f(y)}$ for the other side bound. This should give $f(x) = \frac{2}{2-x} \forall x \in [0, 2)$. Oh, and this function works. $\square$