Let $\Gamma$ be a circumference and $A$ a point outside it. Let $B$ and $C$ be points in $\Gamma$ such that $AB$ and $AC$ are tangent to $\Gamma$. Let $P$ be a point in $\Gamma$. Let $D$, $E$ and $F$ be points in $BC$, $AC$ and $AB$ respectively, such that $PD \perp BC$, $PE \perp AC$, and $PF \perp AB$. Show that $PD^2 = PE \cdot PF$
Problem
Source:
Tags: geometry, incenter, Asymptote
01.09.2014 00:48
It is easy to see that $P$ is the incenter of $\triangle ABC$ because of the perpendiculars. Thus $PD^2=PE\cdot PF$ since they are all inradii. [asy][asy] import cse5; import olympiad; pair O=origin,A=(3,0), B=tangent(A,O,1,1),C=tangent(A,O,1,2),P=incenter(A,B,C),F1=foot(P,A,B),F2=foot(P,A,C), F3=foot(P,B,C); D(CR(MP("\Gamma",O,S),1)); D(MP("A",A,E)--MP("B",B,N)--MP("C",C,S)--cycle); D(P--F1); D(P--F2); D(P--F3); D(O); D(MP("P",P,E)); D(incircle(A,B,C)); D(rightanglemark(P,F1,A,5)); D(rightanglemark(P,F2,C,5)); D(rightanglemark(P,F3,B,5)); [/asy][/asy]
01.09.2014 01:27
What about this? [asy][asy] size(6cm); pathpen=black; pointpen=black; D(unitcircle); D(MP("B",dir(60),dir(60))--MP("C",dir(300),dir(300))--MP("A",(2,0),E)--cycle); D(MP("P",dir(15),dir(15))); D(dir(15)--foot(dir(15),(2,0),dir(60))); D(dir(15)--foot(dir(15),dir(60),dir(300))); D(dir(15)--foot(dir(15),dir(300),(2,0))); D(MP("O",(0,0),W)); label("$\Gamma$",dir(160),dir(160)); [/asy][/asy]
01.09.2014 01:57
Hm, maybe my definition of incricle is wrong.
01.09.2014 02:59
EDIT: Wrong angle names/measures
01.09.2014 05:43
Where can I learn more olympiad geometry? I hate embarrassing myself like this.