Let $n \ge 2$ be an integer. Show that there exist $n+1$ numbers $x_1, x_2, \ldots, x_{n+1} \in \mathbb{Q} \setminus \mathbb{Z}$, so that $\{ x_1^3 \} + \{ x_2^3 \} + \cdots + \{ x_n^3 \}=\{ x_{n+1}^3 \}$, where $\{ x \}$ is the fractionary part of $x$.
Problem
Source: Romania,2014,First TST,Problem 2
Tags: induction, modular arithmetic, number theory, algebra
18.07.2014 18:56
Solution 1 (the official solution).
29.01.2015 07:52
My solution
I think this topic must be posted in Number theory olympiad section, not in Algebra
25.03.2017 19:52
Pick a very large $p\equiv 2\pmod 3$.Will be looking for numbers in the form $x_i=\tfrac{a_{i}}{p}$,note that $\{\tfrac{a_i^3}{p}\}=\tfrac{(a_i)_{p^3}}{p^3}$ ,where $x_{p^3}$ is the residue class modulo of $x$ modulo $p^3$.Let $j$ be the generator of $\mathbb{Z}_{p^3,\times}$ and let $y=j^k=\left( j^{(k\cdot 3^{-1})}\right)^3$ where the equality is regarded in $\mathbb{Z}_{p^3}$ and $3^{-1}\equiv \frac{1}{3} \pmod{p^2(p-1)}$ (one surely exists as $(p^2(p-1),2)=1$).Notice that by the previous every proper residue in $\mathbb{Z}_{p^3}$ is a cubic one.Now $a_i^3\equiv i\pmod {p^3}$ and note that $LHS=\tfrac{\binom{n+2}{2}}{p^3}$ and select $a_{n+1}\equiv \binom{n+2}{2}_{p^3}$.Now set $p\gg \binom{n+2}{2}$ and hence we reach the equality.$\blacksquare$ If I am not mistaken the above should be able to generalize to the existence of $x_i$ so that : $$\sum_{i=1}^n \{x_i^m\}=\{x_{n+1}^m\}$$Where $m>1$ is an arbitrary odd number.