Let $ABCD$ be a square. Consider a variable point $P$ inside the square for which $\angle BAP \ge 60^\circ.$ Let $Q$ be the intersection of the line $AD$ and the perpendicular to $BP$ in $P$. Let $R$ be the intersection of the line $BQ$ and the perpendicular to $BP$ from $C$. (a) Prove that $|BP|\ge |BR|$ (b) For which point(s) $P$ does the inequality in (a) become an equality?
Problem
Source: Benelux MO 2014 Problem 4
Tags: inequalities, trigonometry, geometry unsolved, geometry
professordad
18.07.2014 08:39
Let $X$ be the intersection of $\overline{CR}$ and $\overline{BP}$. Also, set $\angle BAP = \alpha$ with $\alpha \geq 60^{\circ}$, $\angle ABP = \beta$. WLOG set a side of the square to be 1.
First, since $\angle BAQ = \angle PPQ = 90^{\circ}$, $ABPQ$ is cyclic, so $\angle BAP = \angle BQP = \alpha$. Then $\angle PBQ = 90-\alpha$ and $\angle ABQ = \alpha+\beta-90$. So
\[BR = \frac{BX}{\sin{\alpha}} = \frac{\sin{\beta}}{\sin{\alpha}}\] \[BP = BQ\sin{\alpha} = \frac{\sin{\alpha}}{\sin{(180-\alpha-\beta)}}\] It remains to show that $\frac{\sin{\alpha}}{\sin{(180 - \alpha-\beta)}} \geq \frac{\sin{\beta}}{\sin{\alpha}}$, or $\sin{\beta}\sin{(180-\alpha-\beta)} \leq \sin^2{\alpha}$.
It's not hard to show that the maximum value of $\sin{m}\sin{(n-m)}$ is attained when $m = \frac{n}{2}$. (Just consider the value of $\sin{\left(\frac{m}{2}-\theta\right)}\sin{\left(\frac{m}{2}+\theta\right)}$ for $\theta>0$ in relation to $\sin^2{\left(\frac{m}{2}\right)}$.) It then follows that $\sin{\beta}\sin{(180-\alpha-\beta)} \leq \sin^2{\left(90-\frac{\alpha}{2}\right)}$. But $90 - \frac{\alpha}{2} \leq 60$. So
\[\sin{\beta}\sin{(180-\alpha-\beta)} \leq \sin^2{\left(90-\frac{\alpha}{2}\right)} \leq \sin^2{\alpha}\]
Equality holds when $\alpha = 60^{\circ}$ and $\beta = 60^{\circ}$, or when $\triangle ABP$ is equilateral.
drmzjoseph
09.04.2015 05:59
Denote $AB=1, BP=a$ and $AP=b \Rightarrow a^2=b^2+1-2b \cos (\angle BAP) \ge b^2+1-b \ge (b-1)^2+b \ge b \Rightarrow a^2 \ge b$ equality if only if $b=1,a=1$ (i.e. $\triangle BAP$ equilateral) $\angle APB=\angle BQA =\angle QBC$ and $\angle ABP =\angle BCR \Rightarrow \triangle BCR \sim \triangle PBA \Rightarrow BR = \frac{b}{a} \le a = BP \Rightarrow BR \le BP$ and $BR = BP \Longleftrightarrow \triangle BAP$ is equilateral