Problem

Source: European Mathematical Cup 2013, Junior Division, P3

Tags: rotation, induction, geometry, geometric transformation, combinatorics proposed, combinatorics



We are given a combination lock consisting of $6$ rotating discs. Each disc consists of digits $0, 1, 2,\ldots , 9$ in that order (after digit $9$ comes $0$). Lock is opened by exactly one combination. A move consists of turning one of the discs one digit in any direction and the lock opens instantly if the current combination is correct. Discs are initially put in the position $000000$, and we know that this combination is not correct. a) What is the least number of moves necessary to ensure that we have found the correct combination? b) What is the least number of moves necessary to ensure that we have found the correct combination, if we know that none of the combinations $000000, 111111, 222222, \ldots , 999999$ is correct? Proposed by Ognjen Stipetić and Grgur Valentić