Problem

Source: IMO ShortList 1990, Problem 12 (IRE 1)

Tags: geometry, incenter, trigonometry, angle bisector, IMO Shortlist



Let $ ABC$ be a triangle, and let the angle bisectors of its angles $ CAB$ and $ ABC$ meet the sides $ BC$ and $ CA$ at the points $ D$ and $ F$, respectively. The lines $ AD$ and $ BF$ meet the line through the point $ C$ parallel to $ AB$ at the points $ E$ and $ G$ respectively, and we have $ FG = DE$. Prove that $ CA = CB$. Original formulation: Let $ ABC$ be a triangle and $ L$ the line through $ C$ parallel to the side $ AB.$ Let the internal bisector of the angle at $ A$ meet the side $ BC$ at $ D$ and the line $ L$ at $ E$ and let the internal bisector of the angle at $ B$ meet the side $ AC$ at $ F$ and the line $ L$ at $ G.$ If $ GF = DE,$ prove that $ AC = BC.$