Problem

Source: MOP 2005 Homework - Black Group #8

Tags: modular arithmetic, combinatorics unsolved, combinatorics



Let $X$ be a set with $n$ elements and $0 \le k \le n$. Let $a_{n,k}$ be the maximum number of permutations of the set $X$ such that every two of them have at least $k$ common components (where a common component of $f$ and g is an $x \in X$ such that $f(x) = g(x)$). Let $b_{n,k}$ be the maximum number of permutations of the set $X$ such that every two of them have at most $k$ common components. (a) Show that $a_{n,k} \cdot b_{n,k-1} \le n!$. (b) Let $p$ be prime, and find the exact value of $a_{p,2}$.