Problem

Source: MOP 2006 Homework - Red Group #7

Tags: algebra unsolved, algebra



Let $x_{1,1}$, $x_{2,1}$, ..., $x_{n,1}$, $n \ge 2$, be a sequence of integers and assume that not all $x_{i,1}$ are equal. For $k \ge 2$, if sequence $\{x_{i,k}\}^n_{i=1}$ is defined, we define sequence $\{x_{i,k+1}\}^n_{i=1}$ as \[x_{i,k+1}=\frac{1}{2}(x_{i,k}+x_{i+1,k}),\]for $i=1, 2, ..., n$, (where $x_{n+1,k}=x_{1,k}$). Show that if $n$ is odd then there exist indices $j$ and $k$ such that $x_{j,k}$ is not an integer.