Let $P$, $Q$, and $R$ be the points where the incircle of a triangle $ABC$ touches the sides $AB$, $BC$, and $CA$, respectively. Prove the inequality $\frac{BC} {PQ} + \frac{CA} {QR} + \frac{AB} {RP} \geq 6$.
Problem
Source: French TST 2004, pb. 5; 16th KMO #4
Tags: inequalities, geometry, incenter, trigonometry, inradius, perimeter, cyclic quadrilateral
26.05.2004 01:36
are you absolutely sure about the letters pierre, cuz they don't seem to be symetrical
26.05.2004 01:38
Yes, the problem is correct.
26.05.2004 01:41
And Igor has solved it..... Pierre.
26.05.2004 01:56
okay, i've solved it too. i just didn't want to get into computations without being sure about the statement. let's compute $PQ$. Let $I$ be the incenter, then $APIR$ and $BPIQ$ are cyclic quadrilaterals, so $\angle QPI=\angle IBQ = \angle B /2$ and $\angle IPR= \angle IAR = \angle A/2$, so $\angle QPR = \displaystyle \frac {\angle A+\angle C}2 =\frac \pi 2 - \frac { \angle B} 2$. So, using the Sines Law in the triangle $PQR$ we get $PQ = 2r \sin \displaystyle \frac \pi 2 - \frac { \angle B} 2 = 2r \cos \frac {\angle B}2$, where $r$ is the inradius of the triangle $ABC$. Thus the inequality becomes \[ \sum \frac a{ 2r\cos \frac {\angle B}2 }\geq 6 \ \Leftrightarrow \sum \frac a{\cos \frac {\angle B}2 } \geq 12r \quad (1)\] But \[\displaystyle \sum \frac a{\cos \frac {\angle B}2} \geq 3 \sqrt[3] { \frac {abc}{ \cos \frac {\angle A}2 \cos \frac {\angle B}2 \cos \frac {\angle C}2 }} \quad (2) \] so we must prove that \[{ abc \geq 4^3\cdot r^3 \cos \frac {\angle A}2 \cos \frac {\angle B}2 \cos \frac {\angle C}2 } \] \[{ 4Rrs \geq 4^3\cdot r^3 \cos \frac {\angle A}2 \cos \frac {\angle B}2 \cos \frac {\angle C}2 } \] \[ Rs \geq 16\cdot r^2 \sqrt{ \frac { s^3(s-a)(s-b)(s-c)}{(abc)^2}} \] \[ Rs \geq 16 \cdot r^2 \frac {Ss}{4RS} \ \Leftrightarrow \ R^2 \geq 4\cdot r^2 \] which is true by Euler's inequality (I used the relationships $abc=4RS = 4Rrs$, where $S,s$ are the area and semi-perimeter of the triangle $ABC$).
02.06.2004 04:57
Let$ AB=x+y,BC=y+z,AC=x+z$ We got $PQ=\frac{2ry}{\sqrt{r^2+y^2}}$ So,$AB/PQ+BC/QR+AC/RP =(1/2ry)[(x+y)\sqrt{y^2+r^2}+.....] =(1/2)[(x+y)\sqrt{\frac{1}{y^2}+\frac{1}{r^2}}+...] =(1/2)[(x+y)\sqrt{\frac{1}{y^2}+\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}}+...] =(1/2)[\sqrt{(x^2+xy+xy+y^2)(\frac{1}{y^2}+\frac{1}{xy}+\frac{1}{xz}+\frac{1}{xy})}+...] \geq (1/2)[(1+1+\sqrt{\frac{x}{z}}+\sqrt{\frac{x}{z}})+...] \geq 6$ here uses Cauchy and AMGM inequality and the fact $r=\sqrt\frac{xyz}{x+y+z}$ chao
08.07.2004 15:45
The PIQB is cyclic quadrilateral so by Ptolemy theorem we have a\cdot r = PQ\cdot IB or \frac {BC}{PQ} = \frac{IB}{r} . So its enought to prove that \Sigma{IA} \geq 6r which is true by Erdos-Mordell theorem.
08.08.2004 01:05
i forgot the paper i'll post my sol later
15.08.2004 21:55
here is my solution: we have BC/PQ+CA/QR+AB/RP>=3(BC.CA.AB/PQ.QR.RP)^(1/3) but: PQ=BIsinB=2BQsin(B/2)where I is the incenter of ABC and similarly: QR=2CRsin(C/2); RP=2APsin(A/2). so PQ.QR.RA=BQ.CR.AP.8sin(A/2)sin(B/2)sin(C/2) but 8sin(A/2)sin(B/2)sin(C/2)<=1.(by AM-GM and jensen) and BC.CA.AB=(BQ+CR)(CR+AP)(AP+BQ)>=8BQ.CR.AP so BC.CA.AB/PQ.QR.RP>=8 and we are done.
15.08.2004 21:58
actualy, this problem is too easy.