Let $\frac{x^2+y^2}{x^2-y^2} + \frac{x^2-y^2}{x^2+y^2} = k$. Compute the following expression in terms of $k$: \[ E(x,y) = \frac{x^8 + y^8}{x^8-y^8} - \frac{ x^8-y^8}{x^8+y^8}. \] Ciprus
Problem
Source: JBMO 1997, Problem 2
Tags:
01.11.2005 02:51
10.12.2011 05:50
Would the graders want this to be in the same form as the one above, or would this be fine?
12.12.2011 08:09
I think this problem has post in Batic Way.
12.12.2011 16:39
hrithikguy wrote: Would the graders want this to be in the same form as the one above, or would this be fine? In other words, "Hey dear grader, it's your turn to simplify and give me full marks!"
18.12.2011 02:29
Why should a grader care whether denominators have been cleared? It's a correct expression, and it satisfies the necessary condition that it contains only $k$ and no other instances of $x$ or $y$.
08.04.2012 04:41
08.04.2012 05:26
08.04.2012 05:31
Valentin Vornicu wrote: Let $\frac{x^2+y^2}{x^2-y^2} + \frac{x^2-y^2}{x^2+y^2} = k$. Compute the following expression in terms of $k$: \[ E(x,y) = \frac{x^8 + y^8}{x^8-y^8} - \frac{ x^8-y^8}{x^8+y^8}. \] Ciprus Using the identities : $\boxed{\boxed{(A+B)^2+(A-B)^2=2(A^2+B^2),\ (A+B)^2-(A-B)^2=4AB}}$, $k=\frac{(x^2+y^2)^2+(x^2-y^2)^2}{(x^2+y^2)(x^2-y^2)}=\frac{2(x^4+y^4)}{x^4-y^4}\ \cdots [*]$ $\therefore E(x,\ y)=\frac{(x^8+y^8)^2-(x^8-y^8)^2}{(x^8+y^8)(x^8-y^8)}=\frac{4x^8y^8}{x^{16}-y^{16}}$ If $x\neq 0$, then set $t=\left(\frac{y}{x}\right)^4$, from $[*]$, we have $k=\frac{2\left\{1+\left(\frac{y}{x}\right)^4\right\}}{1-\left(\frac{y}{x}\right)^4}=\frac{2(1+t)}{1-t}\Longleftrightarrow t=\frac{k-2}{k+2}\ \because x\neq 0\Longrightarrow k\neq -2.$ $\therefore E(x,\ y)=\frac{4t^2}{1-t^4}=\frac{4\left(\frac{k-2}{k+2}\right)^2}{1-\left(\frac{k-2}{k+2}\right)^4}=\frac{4(k+2)^2(k-2)^2}{(k+2)^4-(k-2)^4}$ $=\frac{4(k+2)^2(k-2)^2}{\{(k+2)^2-(k-2)^2\}\{(k+2)^2+(k-2)^2\}}=\frac{4(k+2)^2(k-2)^2}{4\cdot k\cdot 2*2(k^2+2^2)}$ $=\boxed{\frac{(k+2)^2(k-2)^2}{4k(k^2+4)}}$ If $x=0$, then $k=-2$, yielding $E(0,\ y)=0.$ If $y=0$, then $k=2$, yielding $E(x,\ 0)=0.$
21.10.2012 09:58
My solution : Lemma I used : if $\frac{a}{b} = \frac{c}{d} \text{then} \frac{a+b}{a-b} = \frac{c+d}{c-d} $ this lemma is also know'n as componendo and dividendo and the proof of this lemma is very simple. So $ \frac{x^2+y^2}{x^2-y^2}+\frac{x^2-y^2}{x^2+y^2}= k $ Simplifying gives $\frac{k}{2}=\frac{x^4+y^4}{x^4-y^4}$ Using Lemma $\frac{2x^4}{2y^4} = \frac{k+2}{k-2} $ $(\frac{x}{y})^4 = \frac{k+2}{k-2} $ Now we have to find $\frac{x^8+y^8}{x^8-y^8}+\frac{x^8-y^8}{x^8+y^8} $ which is equivalent to $ 2\frac{x^{16}+y^{16}}{x^{16}-y^{16}} $ $ 2\times\frac{(\frac{k+2}{k-2})^4+1}{(\frac{k+2}{k-2})^4-1}$ $2\times\frac{(k+2)^4+(k-2)^4}{(k+2)^4-(k-2)^4} $
04.07.2013 19:39
deleted post
04.07.2013 20:09
Deleted post
05.07.2013 17:32
PP. Let $\frac{x^2+y^2}{x^2-y^2} + \frac{x^2-y^2}{x^2+y^2} = k$ . Compute the expression $E(x,y) = \frac{x^8 + y^8}{x^8-y^8} - \frac{ x^8-y^8}{x^8+y^8}$ in terms of $k$ . Proof. Since the expressions $\frac{x^2+y^2}{x^2-y^2} + \frac{x^2-y^2}{x^2+y^2}$ and $E(x,y)$ are homogeneously w.r.t. $\{x,y\}$ can use the substitution $\frac xy=t\ :$ $k=\frac {t^2+1}{t^2-1}+\frac {t^2-1}{t^2+1}\implies$ $k=\frac {2\left(t^4+1\right)}{t^4-1}\implies$ $\boxed{t^4=\frac {k+2}{k-2} }$ . Thus, $E= \frac{t^8 + 1}{t^8-1} - \frac{ t^8-1}{t^8+1}\implies$ $E=\frac {4t^8}{\left(t^8-1\right)\left(t^8+1\right)}$ . Therefore, $E=\frac {4\left(\frac {k+2}{k-2}\right)^2}{\left[\left(\frac {k+2}{k-2}\right)^2-1\right]\left[\left(\frac {k+2}{k-2}\right)^2+1\right]}=$ $\frac {4(k+2)^2(k-2)^2}{\left[(k+2)^2-(k-2)^2\right]\left[(k+2)^2+(k-2)^2\right]}\implies$ $\boxed{E=\frac {\left(k^2-4\right)^2}{4k\left(k^2+4\right)}}$ .
30.10.2013 13:37
Let us denote $x^2:=a$ and $y^2:=b$. We want to find $\tfrac{a^4+b^4}{a^4-b^4}-\tfrac{a^4-b^4}{a^4+b^4}$. Note that \begin{align*}\frac{k}{2}+\frac{2}{k}=\frac{(a^2+b^2)^2+(a^2-b^2)^2}{a^4-b^4} & \iff \frac{k^2+4}{4k}=\frac{a^4+b^4}{a^4-b^4}.\end{align*} Then, \[\frac{k^2+4}{4k}-\frac{4k}{k^2+4}=\frac{a^4+b^4}{a^4-b^4}-\frac{a^4-b^4}{a^4+b^4}.\] Therefore, \[E(x,y)=\frac{k^2+4}{4k}-\frac{4k}{k^2+4}=\boxed{\frac{(k^2-4)^2}{4k(k^2+4)}}.\]
30.10.2013 14:01
JBL wrote: Why should a grader care whether denominators have been cleared? It's a correct expression, and it satisfies the necessary condition that it contains only $k$ and no other instances of $x$ or $y$. This is not a fair statement IMO, considering how many graders do not accept fractions that are not in lowest terms or surds that are not simplified (for example)
24.10.2022 19:40
24.10.2022 19:49
djmathman, April 2012 wrote: We can finally say that $\dfrac{k^2+4}{4k}+\dfrac{4k}{k^2+4}=\dfrac{x^8+y^8}{x^8-y^8}+\dfrac{x^8-y^8}{x^8+y^8}$, which is our desired. Oops. Well now I know why this solution was wrong....
18.09.2024 06:23
just calculation with no brain needed $k^4-8k^2+16/4k^3+16k$