Prove that the number $\underbrace{111\ldots 11}_{1997}\underbrace{22\ldots 22}_{1998}5$ (which has 1997 of 1-s and 1998 of 2-s) is a perfect square.
Problem
Source: 0
Tags: induction, Perfect Square
30.10.2005 12:03
30.10.2005 13:21
Looool... http://www.mathlinks.ro/Forum/viewtopic.php?t=5797 . Although, thinking about it once again, probably knowing the initial problem was not that much of an advantage in solving the ISL problem. Darij
30.10.2005 13:22
darij grinberg wrote: Looool... http://www.mathlinks.ro/Forum/viewtopic.php?t=5797 Darij You got to be kidding me
30.10.2005 14:59
30.10.2005 18:53
nvm, i don't think this approach works
19.02.2013 04:52
tµtµ wrote:
Your solution is the most easier to picture out and I appreciate your innovative approach.Do you know some more kinds of ways in which induction works
26.07.2014 18:56
1111...1(1997 of 1-s)222...2(1998 2-s)5 =x10^1998+x*11+4=x*(9*x+1)+x*11+4=(3*x+2)(3*x+2) X=11…1(1998 of 1-s)
30.07.2015 19:14
N=111…1222…25 = 〖10〗^1999∙((〖10〗^1997-1)/9)+2∙((〖10〗^1998-1)/9)∙10+5=〖10〗^1999∙((〖10〗^1997-1)/9)+20∙((〖10〗^1998-1)/9)+5= (〖10〗^1999 (〖10〗^1997-1)+20(〖10〗^1998-1)+45)/9=(〖10〗^3996-〖10〗^1999+20∙〖10〗^1998-20+45)/9= (〖10〗^3996-〖10〗^1999+2∙〖10〗^1999+25 )/9= (〖10〗^3996+〖10〗^1999+25)/9= (〖10〗^3996+2∙5∙〖10〗^1998+5^2)/3^2 = 〖((〖10〗^1998+5)/3)〗^2 Now we will show that 3/ 〖10〗^1998+5 〖10〗^1998+5=〖10〗^1998+3+2=〖10〗^1998+3+3-1≡〖10〗^1998-1 (*)=9k≡0(mod3) *a^n-b^n=(a-b)k Thus N is a perfect square
29.11.2015 20:44
It equals square of 33....3
25.07.2019 12:02
@above its a square that ends in 5 it should be 33...3335