The triangle $ABC$ has $CA = CB$. $P$ is a point on the circumcircle between $A$ and $B$ (and on the opposite side of the line $AB$ to $C$). $D$ is the foot of the perpendicular from $C$ to $PB$. Show that $PA + PB = 2 \cdot PD$.
Problem
Source: JBMO 2002, Problem 1
Tags: geometry, circumcircle, trigonometry, trig identities, Law of Cosines
30.10.2005 16:08
Extend $PB$ to $A'$ such that $BA'=PA$ Then compare triangles $CAP$ and $CBA'$ In the contest I solved it by aid of trig!
30.10.2005 18:01
30.10.2005 23:26
I note the middlepoint $M$ of the side $AB$. $\widehat {CAB}\equiv \widehat {CPB}\equiv \widehat {CPD}\Longrightarrow \triangle CAM\sim\triangle CPD\Longrightarrow$ $\frac{CA}{AM}=\frac{CP}{PD}\Longrightarrow PC=\frac{2a}{c}\cdot PD$. From the Ptolemeu's theorem results the relation $PA\cdot BC+PB\cdot AC=PC\cdot AB\Longrightarrow a\cdot (PA+PB)=c\cdot PC\Longrightarrow$ $PA+PB=\frac ca\cdot PC=\frac ca\cdot \frac{2a}{c}\cdot PD\Longrightarrow PA+PB=2PD$.
27.02.2007 20:54
Well, first note that we can reformulate the problem using an arithmetic trick, writing, then: $PA+PB = PA+PD+DB=2PD \Leftrightarrow PA+DB = PD$ This is nice, because it leads us to another interpretation (which I think is geometric meaningfull). Geomtrically, use the compass on the point P and make a circle with radius $\overline{PA}$. Ok, name the point of intersectiojn between the circle and the segment $\overline{PB}$, M. Draw the line $PC$. Observe that, because of the property of the triangle and other properties on angles and circles, we garantee that $\angle{APC}=\angle{CPB}$ (actually, because they "look" to the same arc). It's wasy to see that our nice $PC$ is notheing less then the mediatrice of the segment $AM$. Now, draw $CM$ and observe the following equality: $CA=CM=CB$. Bingo! $CD$ is mediatrice of the segment $MB$ which completes the proof =]]]
11.04.2009 05:14
Nice! Let X be the foot of the altitude from C to AP. Then $ \triangle CAX$ and $ \triangle CBD$ are congruent since $ \angle CAX=\angle CBD$ and $ CA=CB$, and $ \triangle CPX$ is congruent to $ \triangle CPD$ since $ CX=CD$. So $ PX=PD$, $ AX=BD$, and it is obvious since $ PA+PB=PA-AX+PB+BD=2PD$
21.10.2011 19:28
22.10.2011 09:37
An equivalent enunciation. Let $ABC$ be a triangle with the circumcircle $w$ . Denote the midpoint $M$ of the side $[BC]$ and the diameter $[NS]$ of $w$ so that line $BC$ separates $A$ and $S$ . Denote $X\in AB$ so that $SX\perp AB$ . Prove that $MX\perp AS$ and $AX=\frac {b+c}{2}$ . Proof 1. Apply Ptolemy's theorem to $ABSC\ :\ (b+c)\cdot SC=a\cdot SA$ . Prove easily $\triangle AXS\sim\triangle CMS$ , i.e. $\frac {AX}{CM}=\frac {AS}{SC}$ . Thus, $\frac {b+c}{a}=\frac {SA}{SC}=\frac 2a\cdot AX$ $\implies$ $AX=\frac {b+c}{2}$ . Since $MXBS$ is cyclically, obtain that $\widehat{MXS}\equiv$ $\widehat{MBS}\equiv$ $\widehat{SAX}$ , i.e.in the $X$-right triangle $AXS$ we have $MX\perp AS$ . Proof 2. Denote $D\in BC\cap BC$ . Well-known relations $\left\{\begin{array}{c} AD\cdot AS=bc\\\\ AD=\frac {2bc\cos\frac A2}{b+c}\end{array}\right|\implies$ $AX=AS\cdot \cos\frac A2=$ $\frac {bc\cdot\cos\frac A2}{AD}=$ $\frac {b+c}{2}$ .
11.06.2014 13:17
Let $\begin{cases}\angle ACP=\theta\\ \angle BCP=\phi\end{cases}$. Then $\begin{cases}PA = \sin\theta \dfrac{PC}{\sin(A+\phi)} \\ PB=\sin\phi \dfrac{PC}{\sin(A+\theta)}\\ PD=2PC\cos A\end{cases}$ To prove $\dfrac{\sin\theta}{\sin(A+\phi)}+\dfrac{\sin\phi}{\sin(A+\theta)}=2\cos A$, which is easy to prove given that $\theta+\phi = \pi-2A$.
11.06.2014 15:35
Dear Mathlinkers, this problem is immediat if we think to the Archimede broken chord theorem in the opposite version. Sincerely Jean-Louis
13.07.2015 15:27
On $PB$ take $K$ such that $PK=PA$ now $ \angle APC= \angle KPC$, $PA=PK$ and & $PC=PC$ so triangles $APC$ and $KPC$ are congruent. So $AC=DC=BC$ or $KD=DB$ so $PD=PK+KD=PA+BD $ adding $PD$ on both sides we get the answer.
28.11.2015 14:41
23.11.2018 08:50
Dear Mathlinkers, http://jl.ayme.pagesperso-orange.fr/Docs/Regard%202.pdf p. 21-22. Sincerely Jean-Louis
23.11.2018 11:32
21.04.2021 18:29
Might be similar to others, but posting for storage
14.08.2024 10:13
Not Different than above
28.12.2024 00:15
Synthetic-only solution : Apply Ptolemy's theorem to $ACBP$: $PB \cdot CA + CB \cdot PA = PC \cdot AB \implies CA (PB + PA) = PC \cdot AB \implies PB + PA = \frac{PC \cdot AB}{CA}$. It now suffices to show that $\frac{PC \cdot AB}{CA} = 2 \cdot PD$. Let $M$ be the midpoint of $AB$, note that $\triangle ACM \sim \triangle PCD \implies$ $\frac{AM}{PD} = \frac{CA}{PC} \implies PC \cdot AM = CA \cdot PD$. Multiply by $2 \implies$ $PC \cdot AB = CA \cdot 2PD \implies 2PD = \frac{PC \cdot AB}{CA}$, as desired. $\square$