Problem

Source: IMO 1997, Problem 2, IMO Shortlist 1997, Q8

Tags: geometry, circumcircle, perpendicular bisector, IMO, IMO 1997, isosceles, Hi



It is known that $ \angle BAC$ is the smallest angle in the triangle $ ABC$. The points $ B$ and $ C$ divide the circumcircle of the triangle into two arcs. Let $ U$ be an interior point of the arc between $ B$ and $ C$ which does not contain $ A$. The perpendicular bisectors of $ AB$ and $ AC$ meet the line $ AU$ at $ V$ and $ W$, respectively. The lines $ BV$ and $ CW$ meet at $ T$. Show that $ AU = TB + TC$. Alternative formulation: Four different points $ A,B,C,D$ are chosen on a circle $ \Gamma$ such that the triangle $ BCD$ is not right-angled. Prove that: (a) The perpendicular bisectors of $ AB$ and $ AC$ meet the line $ AD$ at certain points $ W$ and $ V,$ respectively, and that the lines $ CV$ and $ BW$ meet at a certain point $ T.$ (b) The length of one of the line segments $ AD, BT,$ and $ CT$ is the sum of the lengths of the other two.