Problem

Source: 2014 China TST 1 Day 2 Q5

Tags: limit, combinatorics proposed, combinatorics



Let $a_1<a_2<...<a_t$ be $t$ given positive integers where no three form an arithmetic progression. For $k=t,t+1,...$ define $a_{k+1}$ to be the smallest positive integer larger than $a_k$ satisfying the condition that no three of $a_1,a_2,...,a_{k+1}$ form an arithmetic progression. For any $x\in\mathbb{R}^+$ define $A(x)$ to be the number of terms in $\{a_i\}_{i\ge 1}$ that are at most $x$. Show that there exist $c>1$ and $K>0$ such that $A(x)\ge c\sqrt{x}$ for any $x>K$.