Let $\, |U|, \, \sigma(U) \,$ and $\, \pi(U) \,$ denote the number of elements, the sum, and the product, respectively, of a finite set $\, U \,$ of positive integers. (If $\, U \,$ is the empty set, $\, |U| = 0, \, \sigma(U) = 0, \, \pi(U) = 1$.) Let $\, S \,$ be a finite set of positive integers. As usual, let $\, \binom{n}{k} \,$ denote $\, n! \over k! \, (n-k)!$. Prove that \[ \sum_{U \subseteq S} (-1)^{|U|} \binom{m - \sigma(U)}{|S|} = \pi(S) \] for all integers $\, m \geq \sigma(S)$.
Problem
Source: USAMO 1994
Tags: induction, function, algebra unsolved, algebra
28.09.2007 22:43
18.04.2009 08:25
30.03.2011 00:59
Note that \begin{align*} \sum_{U\subseteq S}(-1)^{|U|}\binom{m-\sigma(U)}{|S|} = [x^0]\sum_{U\subseteq S}(-1)^{|U|}\frac{(1+x)^{m-\sigma(U)}}{x^{|S|}} &= [x^{|S|}] (1+x)^m \sum_{U\subseteq S}(-1)^{|U|}(1+x)^{-\sigma(U)} \\ &= [x^{|S|}] (1+x)^m \sum_{U\subseteq S}\prod_{t\in U}\frac{-1}{(1+x)^t} \\ &= [x^{|S|}] (1+x)^m \prod_{t\in S}\left(1-\frac{1}{(1+x)^t}\right) \\ &= [x^{|S|}] (1+x)^{m-\sigma(S)} \prod_{t\in S}((1+x)^t-1) \\ &= [x^{|S|}] (1+x)^{m-\sigma(S)} \prod_{t\in S}\sum_{k=1}^{t}\binom{t}{k}x^k \\ &= [x^0] (1+x)^{m-\sigma(S)} \prod_{t\in S}\sum_{j=0}^{t-1}\binom{t}{j+1}x^j \\ &= \prod_{t\in S}\binom{t}{1} = \pi(S), \end{align*}as desired.
02.01.2019 19:40
Can somebody explain what's going on above? Especially what is $[x^0]$?
02.01.2019 20:43
WolfusA wrote: Can somebody explain what's going on above? Especially what is $[x^0]$? For a polynomial $P(x)$ and a natural number $n$, the number $[x^n]P(x)$ is the coefficient of $x^n$ in $P(x)$.