Let $m$ be a positive integer. Prove that there are integers $a, b, k$, such that both $a$ and $b$ are odd, $k\geq0$ and \[2m=a^{19}+b^{99}+k\cdot2^{1999}\]
Problem
Source: Chinese MO 1999
Tags: modular arithmetic, number theory unsolved, number theory
12.10.2005 10:21
This is from China 1999,you can find it in Resources
13.10.2005 05:59
Yes it's China 1999. Here I propose the rather more general version : Let be given $m,b\in\mathbb N^*$ where $b$ is odd then there exist $a$ odd and $k\in\mathbb N$ so that $2m=a^{19}+b^{99}+k*2^{1999}$.
28.02.2013 03:28
10.05.2014 15:37
Sorry to revive. Take $b=1$. Now we apply Hensel's Lemma on $f(a)=a^{19}+1-2m$ and since $a$ is odd $f(a)\equiv 0\pmod 2$ has a solution and $f'(a)\not\equiv 0\pmod 2$ thus for any $k$ there is $a_k$ with $f(a_k)\equiv 0\pmod{2^{k}}$. In particular we take $k=1999$. And thus $2m=a_{1999}^{19}+1^{99}+k\cdot 2^{1999}$. See we can assume $k\ge 0$ because we can otherwise vary $a_{1999}\mod 2^{1999}$ unless $k\ge 0$.