Let $ABC$ be an acute triangle and let $\Gamma$ be its circumcircle. The bisector of $\angle{A}$ intersects $BC$ at $D$, $\Gamma$ at $K$ (different from $A$), and the line through $B$ tangent to $\Gamma$ at $X$. Show that $K$ is the midpoint of $AX$ if and only if $\frac{AD}{DC}=\sqrt{2}$.
Problem
Source: CentroAmerican 2013 Problem 5
Tags: trigonometry, geometry, angle bisector, trig identities, Law of Sines, geometry unsolved
25.08.2013 00:36
31.08.2013 05:30
obiously <CAD=<DAB=<KBX=a and let be <ACB=<BXD=b, <BKX=180-b and by law of sines in ADC sin(b)/sin(a)=AD/CD and in BXK, sin(180-b)/sin(a)=BX/KX when sin(b)=sin(180-b) => AD/CD=BX/KX, => AK=KX <=> BX^2=KX*AX <=> BX^2 = 2 XK^2 <=> BX/XK= sqrt(2) <=> AD/CD=sqrt(2).
09.10.2013 09:48
Note that , by simple chasing and sine rule , it's easy to see that , $AK=KX \longleftrightarrow 2\sin(\frac{A}{2}+C)sin(B+\frac{3A}{2})=2\sin^2{C} $ $\longleftrightarrow 2(sin^2{C}-sin^2{\frac{A}{2}}) =sin^2{C}$ $\longleftrightarrow \frac{sinC}{sin\frac{A}{2}}= \sqrt{2}$ $\longleftrightarrow \frac{AD}{DC}=\sqrt{2}$
09.10.2013 21:05
$\triangle ACD\sim\triangle ABK\implies\frac{AB}{BK}=\frac{AD}{CD}=\sqrt 2(\ 1\ )$. $\triangle ABX\sim\triangle BKX\implies\frac{AX}{BX}=\frac{AB}{BK}\ (\ 2\ )$. With $(1)$ we get $\frac{AX}{BX}=\sqrt 2\ (\ 3\ )$. By P.o.P, $BX^2=KX\cdot KA\ (\ 4\ )$. With $(3)$, from $(4)$ we get $AX=2KX$. The reverse is solved following backwards the above proof. Best regards, sunken rock