Problem

Source:

Tags: geometry, geometric transformation, homothety



Consider a triangle $ABC$. Let $S$ be a circumference in the interior of the triangle that is tangent to the sides $BC$, $CA$, $AB$ at the points $D$, $E$, $F$ respectively. In the exterior of the triangle we draw three circumferences $S_A$, $S_B$, $S_C$. The circumference $S_A$ is tangent to $BC$ at $L$ and to the prolongation of the lines $AB$, $AC$ at the points $M$, $N$ respectively. The circumference $S_B$ is tangent to $AC$ at $E$ and to the prolongation of the line $BC$ at $P$. The circumference $S_C$ is tangent to $AB$ at $F$ and to the prolongation of the line $BC$ at $Q$. Show that the lines $EP$, $FQ$ and $AL$ meet at a point of the circumference $S$.