Problem

Source: IMO 1959, Day 2, Problem 5

Tags: geometry, circumcircle, perpendicular bisector, angle bisector, IMO, IMO 1959



An arbitrary point $M$ is selected in the interior of the segment $AB$. The square $AMCD$ and $MBEF$ are constructed on the same side of $AB$, with segments $AM$ and $MB$ as their respective bases. The circles circumscribed about these squares, with centers $P$ and $Q$, intersect at $M$ and also at another point $N$. Let $N'$ denote the point of intersection of the straight lines $AF$ and $BC$. a) Prove that $N$ and $N'$ coincide; b) Prove that the straight lines $MN$ pass through a fixed point $S$ independent of the choice of $M$; c) Find the locus of the midpoints of the segments $PQ$ as $M$ varies between $A$ and $B$.