Problem

Source: China south east mathematical Olympiad 2008 day1 problem 4

Tags: combinatorics unsolved, combinatorics



Let $m, n$ be positive integers $(m, n>=2)$. Given an $n$-element set $A$ of integers $(A=\{a_1,a_2,\cdots ,a_n\})$, for each pair of elements $a_i, a_j(j>i)$, we make a difference by $a_j-a_i$. All these $C^2_n$ differences form an ascending sequence called “derived sequence” of set $A$. Let $\bar{A}$ denote the derived sequence of set $A$. Let $\bar{A}(m)$ denote the number of terms divisible by $m$ in $\bar{A}$ . Prove that $\bar{A}(m)\ge \bar{B}(m)$ where $A=\{a_1,a_2,\cdots ,a_n\}$ and $B=\{1,2,\cdots ,n\}$.