Let $ S $ be a set of $ n $ concentric circles in the plane. Prove that if a function $ f: S\to S $ satisfies the property \[ d( f(A),f(B)) \geq d(A,B) \] for all $ A,B \in S $, then $ d(f(A),f(B)) = d(A,B) $, where $ d $ is the euclidean distance function.
Problem
Source: Romanian IMO Team Selection Test TST 1996, problem 15
Tags: function, geometry proposed, geometry
27.09.2005 06:03
Consider the two circles $ D $ and $ E $ such that $ d(D,E) $ is maximal. Then $ d(f(D),f(E))=d(D,E) $, and either $ f(D)=D, f(E)=E $ or $ f(D)=E, f(E)=D $. Now assume for two circles $ A,B $, $ d(f(A),f(B))>d(A,B) $. Then $ d(f(D),f(E)) = d(D,E) \leq d(D,A)+d(A,B)+d(B,E) < $ $ \min(d(f(D),f(A))+d(f(A),f(B))+d(f(B),f(E)), $ $ d(f(D),f(B))+d(f(B),f(A))+d(f(A),f(E))) = d(f(D),f(E)) $. Absurd.
21.04.2010 01:19
julien_santini wrote: Consider the two circles $ D $ and $ E $ such that $ d(D,E) $ is maximal. Then $ d(f(D),f(E))=d(D,E) $, and either $ f(D)=D, f(E)=E $ or $ f(D)=E, f(E)=D $. Now assume for two circles $ A,B $, $ d(f(A),f(B))>d(A,B) $. Then $ d(f(D),f(E)) = d(D,E) \leq d(D,A)+d(A,B)+d(B,E) < $ $ \min(d(f(D),f(A))+d(f(A),f(B))+d(f(B),f(E)), $ $ d(f(D),f(B))+d(f(B),f(A))+d(f(A),f(E))) = d(f(D),f(E)) $. Absurd. I don't think this argument works unless you can show that $f$ is continuous. Anyway, I think we just first show that the function $f$, restricted on the largest circle, is an isometry. Then, get rid of this circle, and proceed inward to the smallest circle.
21.04.2010 07:20
(Due to Chung Ping Ngai, HK IMO team member) First off, f must be bijective, for otherwise there exists two distinct elements (say, X, Y) in S which are mapped to the same element, so that d(f(X), f(Y)) = 0 < d(X, Y), a contradiction. Note that since S is finite, for all A, B in S we have $f^p(A)=A$ and $f^q(B)=B$ for some positive integers p, q. Then $f^{pq}(A)=A$ and $f^{pq}(B)=B$. But $d(f^{pq}(A), f^{pq}(B)) \geq d(f^{pq-1}(A), f^{pq-1}(B)) \geq ... \geq d(A, B)$, so all $\geq$ signs must become equal signs. QED.
21.04.2010 09:06
Ohhh. OK. I thought $S$ was the set of points of $n$ circles. Apologies to the first reply.