Let $f:\mathbb R^+ \to \mathbb R^+$ be a function such that: \[ x,y > 0 \qquad f(x+f(y)) = yf(xy+1). \] a) Show that $(y-1)*(f(y)-1) \le 0$ for $y>0$. b) Find all such functions that require the given condition.
Problem
Source:
Tags: function, algebra, functional equation
19.05.2013 00:31
We have $f$ - nonconstant. a) if $y=1$, then $(y-1)(f(y)-1) = 0$. Suppose that $y\neq 1$. If $(y-1)(f(y)-1)>0$, then at $P(\frac{f(y)-1}{y-1},y)$ $ \rightarrow$ $y=1$ , contradiction. Hence, $(f(y)-1)(y-1)\le 0$. b) since a), if $y>1$, then $f(y)\le 1$ and if $y<1$ then $f(y)\ge1$. Suppose that $y>1$ . $P(\frac{y-1}{y}, y)$ $ \Rightarrow $ $ yf(y)=f(1-\frac{1}{y}+f(y))$ and $f(y)=\frac{1}{y}$. Hence \[ f(x+f(y))=yf(xy+1)=\frac{y}{xy+1} .\] So, $f(1)=1$ and \[ f(x)=\frac{1}{x} \] for all $x \in R^+ .$
19.05.2013 00:39
Sorry but all your latex code is not understandable so it needs to be modified.What did you intend to say ?
19.05.2013 00:44
LaTeX has not been working correctly over the past couple of hours. For now, to try and understand him, click on the "Quote" button on his post and copy the LaTeX to another source.
19.05.2013 00:59
We have $f$ - nonconstant. a) if $y=1$, then the equality holds. Suppose that $ y\not= 1 $. If $ (y-1)(f(y)-1)>0 $, then at $ P(\frac{f(y)-1}{y-1},y) $ $ \rightarrow $ $ y=1 $ , contradiction. Hence, $ (f(y)-1)(y-1)\le 0 $. b) since a), if $y>1$, then $f(y)\le 1$ and if $y<1$ then $f(y)\ge1$. Suppose that $y>1$ . $P(\frac{y-1}{y}, y)$ $ \Rightarrow $ $ yf(y)=f(1-\frac{1}{y}+f(y))$ and $f(y)=\frac{1}{y}$. Hence \[ f(x+f(y))=yf(xy+1)=\frac{y}{xy+1} .\] So, $f(1)=1$ and \[ f(x)=\frac{1}{x} \] for all $x \in R^+ .$
19.05.2013 01:05
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=36&t=533460
17.12.2016 22:14
mathuz wrote: We have $f$ - nonconstant. a) if $y=1$, then $(y-1)(f(y)-1) = 0$. Suppose that $y\neq 1$. If $(y-1)(f(y)-1)>0$, then at $P(\frac{f(y)-1}{y-1},y)$ $ \rightarrow$ $y=1$ , contradiction. Hence, $(f(y)-1)(y-1)\le 0$. b) since a), if $y>1$, then $f(y)\le 1$ and if $y<1$ then $f(y)\ge1$. Suppose that $y>1$ . $P(\frac{y-1}{y}, y)$ $ \Rightarrow $ $ yf(y)=f(1-\frac{1}{y}+f(y))$ and $f(y)=\frac{1}{y}$. Hence \[ f(x+f(y))=yf(xy+1)=\frac{y}{xy+1} .\]So, $f(1)=1$ and \[ f(x)=\frac{1}{x} \]for all $x \in R^+ .$ Great solution
17.03.2017 03:23
$P(\frac{y-1}{y}, y)$ $ \Rightarrow $ $ yf(y)=f(1-\frac{1}{y}+f(y))$ and $f(y)=\frac{1}{y}$ How?
17.03.2017 20:03
@above if $f(y)<\frac{1}{y}$ then $1-\frac{1}{y}+f(y)<1\rightarrow yf(y)=f(1-\frac{1}{y}+f(y))\geq 1\rightarrow f(y)\geq \frac{1}{y}$, contradiction. If $f(y)>\frac{1}{y}$ then $1-\frac{1}{y}+f(y)>1\rightarrow yf(y)=f(1-\frac{1}{y}+f(y))\leq 1\rightarrow f(y)\leq \frac{1}{y}$, contradiction. So $f(y)=\frac{1}{y}$.
16.03.2019 04:10
In mathuz's solution, why does $ P(\frac{f(y)-1}{y-1},y) \rightarrow y=1$ ?
18.03.2022 19:21
Plops wrote: In mathuz's solution, why does $ P(\frac{f(y)-1}{y-1},y) \rightarrow y=1$ ? just substitute and because of the condition problem there is a contradiction
19.03.2022 18:03
Olemissmath wrote: Let $f:\mathbb R^+ \to \mathbb R^+$ be a function such that: \[ x,y > 0 \qquad f(x+f(y)) = yf(xy+1). \, (*) \] Another approach a) Show that $(y-1)*(f(y)-1) \le 0$ for $y>0$. $$Ez$$ b) Find all such functions that require the given condition. Claim 1: $f$ is injective Proof: Assume $\exists \, a>b: f(a)=f(b)=c$ $- \, \frac{P(x;a)}{P(x;b)}: \frac{af(ax+1)}{bf(bx+1)}=1 \leftrightarrow \frac{f(ax+1)}{f(bx+1)}=\frac{b}{a}\leftrightarrow \frac{f(\frac{a}{b}.x+1)}{f(x+1)}=\frac{b}{a}$ - If $\exists \, \frac{b}{a}<y<1: \, f(y)>1, P\left (\frac{b\left [ f(y)-1 \right ]}{ay-b};y \right ): f\left ( \frac{b}{a}.something+1 \right )=yf(something+1) \rightarrow y=\frac{a}{b}$, a contradiction -Similarly, it's a contradiction if $\exists \, 1<y<\frac{a}{b}: \, f(y)<1$ So $f(y)=1, \, \forall y \in \left ( \frac{b}{a};1 \right ) \cap \left ( 1;\frac{a}{b} \right )$ Choose $x,y>0: \, \left\{\begin{matrix} y \in \left ( \frac{b}{a};1 \right ) \cap \left ( 1;\frac{a}{b} \right ) & & \\x+1 \in \left ( 1;\frac{a}{b} \right ) & & \\xy +1 \in \left ( 1;\frac{a}{b} \right ) & & \\ \end{matrix}\right.$ in $(*)$ then $y=1$, a contradiction Q.E.D $P(1;1):$ $f(1)=1$ Claim 2: $f$ is not increasing Proof: $\frac{P(xz;y)}{P(xy;z)}:\frac{f(xz+f(y))}{y}=\frac{f(xy+f(z))}{z}, (1)$ If $\exists y<z: f(y)<f(z)$ then let $x=\frac{f(z)-f(y)}{z-y}$ in $(1)$, we get $y=z$, a contradiciton Q.E.D Claim 3: $f$ is surjective Proof: Let $x= \frac{1}{y}, \, z=1$ in $(1)$, we get: $f\left ( \frac{1}{y}+f(y) \right )=y.f(1+f(1))$. Q.E.D From Claim 1, Claim 2 and Claim 3, we get: $f$ is continuous Let $x \rightarrow 0$ in $(*)$, we get: $f(f(y))=y$ From $(*)$, we get: $\frac{f(x+f(y))}{y}=\frac{f(y+f(x))}{x}\, \left ( =f(xy+1) \right ), \, (2)$ Let $x \rightarrow f(x)$ in $(2)$, we get: $\frac{f(x)}{y}=\frac{f(x+y)}{f(f(x)+f(y))} \Rightarrow \frac{f(x)}{y}=\frac{f(y)}{x}\leftrightarrow xf(x)=yf(y), \forall x,y>0$ $\rightarrow$ So $f(x)=\frac{a}{x} \, \forall x>0$ for some constant $a>0$ But $f(1)=1$ so $a=1$ So the only solution is: $$ f(x)=\frac{1}{x} \, \forall x>0$$