Problem

Source: Romanian IMO Team Selection Test TST 1987, problem 11

Tags: algebra, polynomial, quadratics, system of equations, algebra proposed



Let $P(X,Y)=X^2+2aXY+Y^2$ be a real polynomial where $|a|\geq 1$. For a given positive integer $n$, $n\geq 2$ consider the system of equations: \[ P(x_1,x_2) = P(x_2,x_3) = \ldots = P(x_{n-1},x_n) = P(x_n,x_1) = 0 . \] We call two solutions $(x_1,x_2,\ldots,x_n)$ and $(y_1,y_2,\ldots,y_n)$ of the system to be equivalent if there exists a real number $\lambda \neq 0$, $x_1=\lambda y_1$, $\ldots$, $x_n= \lambda y_n$. How many nonequivalent solutions does the system have? Mircea Becheanu