Find all integers $a,b,m,n$, with $m>n>1$, for which the polynomial $f(X)=X^n+aX+b$ divides the polynomial $g(X)=X^m+aX+b$. Laurentiu Panaitopol
Problem
Source: Romanian IMO Team Selection Test TST 2003, problem 7
Tags: algebra, polynomial, Vieta, trigonometry, algebra proposed
Max D.R.
07.07.2009 00:11
Someone can give a solution or at least a hint about this problem.
Valentin Vornicu
07.07.2009 01:55
There are 7 solutions (I remember this because when we were grading the problem, it was basically 1 point for each solution found ) and it's pretty computational, nothing extremely smart about this problem.
Xantos C. Guin
08.07.2009 21:14
Let $ m = n + k$ for some $ k \in \mathbb{N}$.
$ f(x)$ divides $ g(x)$ iff $ f(x)$ divides $ g(x) - f(x) = x^m - x^n = x^n(x^k - 1)$.
Since the roots of $ x^n(x^k - 1)$ are all of magnitude $ 0$ or $ 1$, the roots of $ f(x) = x^n + ax + b$ must also be of magnitude $ 0,1$.
Thus, $ b = 0$ OR $ b = \pm 1$.
Case I: $ b = 0$:
$ x^n + ax | x^n(x^k - 1) \Longleftrightarrow x^{n - 1} + a | x^{n - 1}(x^k - 1)$
Since the roots of $ x^{n - 1}(x^k - 1)$ are all of magnitude $ 0$ or $ 1$, the roots of $ x^{n - 1} + a$ must also be of magnitude $ 0,1$. Thus, $ a = 0$ OR $ a = \pm 1$.
$ (a,b) = (0,0)$ yields: $ x^n|x^m$ which is true for all integers $ m > n > 1$.
Thus, $ (a,b,m,n) = (0,0,m,n)$ is a solution for all positive integers $ m > n > 1$.
$ (a,b) = ( - 1,0)$ yields: $ x^{n - 1} - 1|x^k - 1$.
$ x^{n - 1} - 1|x^k - 1$ iff the $ (n - 1)$th roots of unity are a subset of the $ k$th roots of unity.
Therefore, $ n - 1|m - n \Leftrightarrow m - n = t(n - 1) \Leftrightarrow m = (t + 1)n - t$ for any $ t \in \mathbb{N}$.
Thus, $ (a,b,m,n) = ( - 1,0,(t + 1)n - t,n)$ is a solution for all positive integers $ n,t$ such that $ n > 1$.
$ (a,b) = (1,0)$ yields: $ x^{n - 1} + 1|x^k - 1$.
The roots of $ x^{n - 1} + 1$ are the $ 2(n - 1)$th roots of unity that are not $ (n - 1)$th roots of unity.
$ x^{n - 1} + 1|x^k - 1$ iff the $ 2(n - 1)$th roots of unity are a subset of the $ k$th roots of unity.
Therefore, $ 2(n - 1)|m - n \Leftrightarrow m - n = 2t(n - 1) \Leftrightarrow m = (2t + 1)n - 2t$ for any $ t \in \mathbb{N}$.
Thus, $ (a,b,m,n) = (1,0,(2t + 1)n - 2t,n)$ is a solution for all positive integers $ n,t$ such that $ n > 1$.
Case II: $ b = \pm1$:
$ x^n + ax\pm1 | x^n(x^k - 1) \Longleftrightarrow x^n + ax\pm1 | x^k - 1$ (Since $ 0$ is not a root of $ x^n + ax\pm1$).
Let the roots of $ x^n + ax \pm 1$ be $ r_i$ for $ i \in \overline{1,n}$.
If $ n > 2$, by Vieta's:
$ \sum r_i = 0$, $ \prod r_i = \pm1$, and thus, $ \sum \frac {1}{r_i} = \sum \frac {\pm r_1 r_2 \cdots r_{n - 1} r_n}{r_i} = \pm a$
However, since $ x^n + ax \pm 1$ has all real coefficients, if $ r_i$ is a root, then $ \overline{r_i}$ must also be a root.
Note that since all the $ r_i$ are $ k$th roots of unity: $ \overline{r_i} = \frac {1}{r_i}$.
Thus, $ r_i + \overline{r_i} = \frac {1}{r_i} + \frac {1}{\overline{r_i}}$ for all non-real $ k$th roots of unity $ r_i$. The other two possible $ k$th roots of unity are, $ \pm1$ which satisfy $ r_i = \frac {1}{r_i}$.
Therefore, if $ n > 2$, then $ \sum \frac {1}{r_i} = \sum r_i \Longleftrightarrow \pm a = 0 \Rightarrow a = 0$.
$ (a,b) = (0, - 1)$ yields: $ x^n - 1 | x^k - 1$.
$ x^n - 1|x^k - 1$ iff the $ n$th roots of unity are a subset of the $ k$th roots of unity.
Therefore, $ n|m - n \Leftrightarrow m - n = tn \Leftrightarrow m = (t + 1)n$ for any $ t \in \mathbb{N}$.
Thus, $ (a,b,m,n) = (0, - 1,(t + 1)n,n)$ for all positive integers $ n,t$ such that $ n > 1$.
$ (a,b) = (0,1)$ yields: $ x^n + 1 | x^k - 1$.
The roots of $ x^n + 1$ are the $ 2n$th roots of unity that are not $ n$th roots of unity.
$ x^n + 1|x^k - 1$ iff the $ 2n$th roots of unity are a subset of the $ k$th roots of unity.
Therefore, $ 2n|m - n \Leftrightarrow m - n = 2tn \Leftrightarrow m = (2t + 1)n$ for any $ t \in \mathbb{N}$.
Thus, $ (a,b,m,n) = (0,1,(2t + 1)n,n)$ for all positive integers $ n,t$ such that $ n > 1$.
$ n = 2$ yields: $ x^2 + ax\pm1 | x^k - 1$.
Since the roots of $ x^2 + ax\pm1$ are $ k$th roots of unity, either the roots are $ \pm 1$ (in which case $ f(x) = x^2 - 1$ which has already been covered above with $ (a,b) = (0, - 1)$), or in the form $ cis\left(\pm\theta\right)$.
Therefore, $ x^2 + ax\pm1 = (x - cis(\theta))(x - cis( - \theta)) = x^2 - 2\cos(\theta)x + 1$.
Thus, $ b = 1$ and $ a = - 2\cos(\theta)$ must be a non-zero integer, the only possibilities are $ \pm1$ and $ \pm2$.
If $ a = \pm2$, then $ f(x)$ has a double root, which is a contradiction since $ x^k - 1$ does not have a double root.
$ (a,b) = ( - 1, - 1)$ yields $ x^2 - x + 1|x^k - 1$.
The roots of $ x^2 - x + 1$ are $ cis\left(\pm\frac {\pi}{6}\right)$ which must be $ k$th roots of unity.
Therefore, $ 6|m - n \Leftrightarrow m - n = 6t \Leftrightarrow m = n + 6t$.
Thus, $ (a,b,m,n) = ( - 1, - 1,n + 6t,n)$ is a solution for all positive integers $ n,t$ such that $ n > 1$.
$ (a,b) = (1, - 1)$ yields $ x^2 + x + 1|x^k - 1$.
The roots of $ x^2 - x + 1$ are $ cis\left(\pm\frac {\pi}{3}\right)$ which must be $ k$th roots of unity.
Therefore, $ 3|m - n \Leftrightarrow m - n = 3t \Leftrightarrow m = n + 3t$.
Thus, $ (a,b,m,n) = ( - 1, - 1,n + 3t,n)$ is a solution for all positive integers $ n,t$ such that $ n > 1$.
Therefore, the solutions are:
$ (0,0,m,n)$
$ ( - 1,0,(t + 1)n - t,n)$
$ (1,0,(2t + 1)n - 2t,n)$
$ (0, - 1,(t + 1)n,n)$
$ (0,1,(2t + 1)n,n)$
$ ( - 1, - 1,n + 6t,n)$
$ ( - 1, - 1,n + 3t,n)$
Where $ m,n,t \in \mathbb{N}$ such that $ m > n > 1$.
Max D.R.
25.09.2009 02:01
Thanks for your answer Xantos C. Guin