Let $A'$ and $B'$ be feet of altitudes from $A$ and $B$, respectively, in acute-angled triangle $ABC$ ($AC\not = BC$). Circle $k$ contains points $A'$ and $B'$ and touches segment $AB$ in $D$. If triangles $ADA'$ and $BDB'$ have the same area, prove that \[\angle A'DB'= \angle ACB.\]
Problem
Source: Serbian National Olympiad 2013, Problem 5
Tags: geometry, trigonometry, ratio, circumcircle, geometric transformation, reflection, parallelogram
09.04.2013 22:44
$[ADA']=[BDB']\Longleftrightarrow\frac{AD}{BD}=\frac{\sin\alpha\cos\alpha}{\sin\beta\cos\beta}$. It easy to get $\angle AB'D=\angle DA'B=x$. Now use sine law for $\triangle ADB'$ and $\triangle BDA'$ to get $\frac{AD}{BD}=\frac{\sin(\beta+x)\cos\alpha}{\sin(\alpha+x)\cos\beta}$. Now we get $\frac{\sin(\beta+x)}{\sin(\alpha+x)}=\frac{\sin\alpha}{\sin\beta}$ and hence $x=\gamma$ so $\angle A'DB'=\gamma$.
09.04.2013 23:02
Assume circle $(K) \equiv \odot(A'B'D)$ touches $AB$ at $D$. Let $BC, AC$ meet $(K)$ again at $E, F,$ resp. Since $A'FB'E$ is cyclic and $A'B'$ is antiparallel of $AB$ WRT $\widehat C$ $\implies$ $EF \parallel AB$. Powers of $A, B$ to $(K)$ are in ratio ${\frac{\overline{AD}^2}{\overline{BD}^2}} = \frac{\overline{AB'} \cdot \overline{AF}}{\overline{BA'} \cdot \overline{BE}} = \frac{\overline{AB'} \cdot \overline{AC}}{\overline{BA'} \cdot \overline{BC}} = \frac{b \cos \widehat A}{a \cos \widehat B}$. In addition, $\measuredangle CB'D = \measuredangle CB'A' + \measuredangle A'B'D = \measuredangle ABC + \measuredangle A'DB = \measuredangle DA'C$. Assume areas of $\triangle ADA', \triangle BDB'$ are equal. Then $1 = \frac{\frac{1}{2} [AD] \cdot [AA'] \cdot \sin \widehat{A'AD}}{\frac{1}{2} [BD] \cdot [BB'] \cdot \sin \widehat{B'BD}} = \frac{[AD] \cdot ([AB] \cdot \sin \widehat B) \cdot \cos \widehat B}{[BD] \cdot ([AB] \cdot \sin \widehat A) \cdot \cos \widehat A} = \frac{[AD] \cdot b \cos \widehat B}{[BD] \cdot a \cos \widehat A}$ $\implies$ $-\frac{\overline{AD}}{\overline{BD}} = \frac{a \cos \widehat A}{b \cos \widehat B}$
Assume both conditions are satisfied. Then ${\frac{b \cos \widehat A}{a \cos \widehat B} = \frac{\overline{AD}^2}{\overline{BD}^2}} = \frac{a^2 \cos^2 \widehat A}{b^2 \cos^2 \widehat B}$ $\implies$ $\frac{a^2}{b^2} = \frac{b \cos \widehat B}{a \cos \widehat A} = -\frac{\overline{BD}}{\overline{AD}}$ $\implies$ $CD$ is also C-symmedian of $\triangle ABC$. Quadrilateral $CB'DA'$ has equal opposite angles at $A', B'$ and diagonal $CD$ (C-symmedian) cuts the other diagonal $A'B'$ (antiparallel of $AB$ WRT $\widehat C$) at its midpoint $\implies$ $CB'DA'$ is either parallelogram or kite. But if $CB'DA'$ was kite $\implies$ $ [A'C'] = [CB']$ $\implies$ $[BC] = [CA]$, which contradicts problem condition. $CB'DA'$ is therefore parallelogram $\implies$ $\measuredangle B'DA' = \measuredangle A'CB' \equiv \measuredangle BCA$.
10.04.2013 01:28
since $ABA'B'$ is cyclic $\angle BA'B'=180-\angle BAC$ so now since $\angle ADB'=\angle DB'A'$ we get $\angle AB'D=\angle BA'D$ however thanks to the equal areas the heights of $DB'A$ and $A'BD$ from $B'$ and $A'$ with length $p,q$ satisfy $p/q=AD/BD$. however only 2 points on circle $AB'D$ are distant from $AB$ by exactly $p$ and those 2 points both with $A,B$ make similar triangles to $BA'D$ so $B'$ is one of those 2 points so $AB'D\sim A'BD$ and $AC\not = BC$ than $\angle ADB'=\angle ABC$ meaning $B'D||BC$ similarly $A'D||AC$ so $\angle A'DB=\angle ACB$
22.02.2014 21:31
Outlines of my ugly proof Let $\angle {A'DB'}=\theta$ and $AC \cap \odot A'B'D=X$.Then $[AA'D]=[BB'D] \Rightarrow BD*BB'cosA=AD*AA'cosB \Rightarrow \frac{AD}{BD}=\frac{sin2C}{sin2B}$.Substitute $BD=c-AD$ to get $AD$.By power of point theorem we have $AX=\frac{AD^2}{AB'}$.Hence get length $AX$ and hence $B'X$.But sine rule in $\triangle B'A'X$ gives $B'X=\frac{B'A'sin(B-\theta)}{sin \theta}$.Substitute $B'A'=Rsin2C$ and thus equate the two equations for $B'X$ and get $\theta=\angle C$.
05.03.2015 00:28
Good problem, although easy bashable.
25.03.2016 21:24
Wolowizard, your solution is painfully wrong. Your last implication is incorrect and in fact you just made the first step towards the solution. Here is mine solution: From the areas equality we easily get $\frac{AD}{BD}=\frac{\sin \alpha \cos \alpha}{\sin \beta \cos \beta}$ (we can do it Wolowizard's way or intersect $A'B'$ and $AB$). Now we denote $\angle ADB'=x$ and $\angle BDA'=y$. Now we notice that $\alpha + x=\beta +y$. Now by applying sine theorems in $\triangle ADB'$ and $\triangle BDA'$ we get $\frac{\sin \alpha \cos \alpha}{\sin \beta \cos \beta} =\frac{AD}{BD}=\frac{\cos \alpha \sin y}{\cos \beta \sin x}$. Now we conclude $\frac{\sin y}{\sin (\pi-x)}=\frac{\sin \alpha}{\sin (\pi - \beta)}$ so now because $\pi +y -x=\pi + \alpha - \beta$ we conclude $y=\alpha$ and $x=\beta$ so $\angle A'DB'=\angle ACB$ so we are finished.
25.03.2016 23:00
My solution Let $\angle DA'A=x$,$\angle DB'B=y$. From Sine theorems on triangles $\triangle AA'D$ and $\triangle BB'D$ and from the surface equality condition we have $\frac{AD}{BD}=\frac{\sin{2a}}{\sin{2b}}$. Now since $AD$ and $BD$ touch circle $A'B'D$ we have that $\angle B'DA=\angle DA'B'$ which implies that $x=y$. Now from Sine theorem on triangle $\triangle BA'D$ we have that $\frac{BA'}{BD}=\frac{\sin{90-x+b}}{\sin{90-x}}$ which is equivalent to $\frac{\sin{a+b}\cos{a-b}}{\sin{b}}=\frac{\sin{90-x+b}}{\sin{90-x}}$ which implies that $\cot{90-x}=\cot{c}$ implying $x=90-c$ which implies $\angle A'DB'=c$.