Problem

Source: Iran 2005

Tags: number theory, greatest common divisor, logarithms, geometry, number theory proposed



For each $m\in \mathbb N$ we define $rad\ (m)=\prod p_i$, where $m=\prod p_i^{\alpha_i}$. abc Conjecture Suppose $\epsilon >0$ is an arbitrary number, then there exist $K$ depinding on $\epsilon$ that for each 3 numbers $a,b,c\in\mathbb Z$ that $gcd (a,b)=1$ and $a+b=c$ then: \[ max\{|a|,|b|,|c|\}\leq K(rad\ (abc))^{1+\epsilon} \] Now prove each of the following statements by using the $abc$ conjecture : a) Fermat's last theorem for $n>N$ where $N$ is some natural number. b) We call $n=\prod p_i^{\alpha_i}$ strong if and only $\alpha_i\geq 2$. c) Prove that there are finitely many $n$ such that $n,\ n+1,\ n+2$ are strong. d) Prove that there are finitely many rational numbers $\frac pq$ such that: \[ \Big| \sqrt[3]{2}-\frac pq \Big|<\frac{2^ {1384}}{q^3} \]