Let $r$ and $s$ be positive real numbers such that $(r+s-rs)(r+s+rs)=rs$. Find the minimum value of $r+s-rs$ and $r+s+rs$
Problem
Source:
Tags: inequalities
03.02.2013 15:46
hello, for $r+s-rs$ i have found the minimum $-2\sqrt{3}-3$ for $(r,s)=(-\sqrt{3},-\sqrt{3})$ and for $r+s+rs$ is the searched minimum $0$ for $(r,s)=(0,0)$. Sonnhard.
03.02.2013 15:59
Sonnhard, take a moment to read the problem befoemre going to your little calculator or online program. It says positive real numbers. It's because of people like you why askers don't get the answers they want or the solutions to learn understand the solution for themselves.
03.02.2013 16:44
hello, sorry, we have $(r+s)^2-(rs)^2=rs$ $r^2+s^2=r^2s^2-rs$ by the AM-GM inequality we get $r^2+s^2\geq rs$ $r^2s^2-rs\geq 2rs$ $r^2s^2-3rs\geq 0$ thus we obtain $rs\geq 3$ and $(r+s)^2\geq rs+(rs)^2\geq 3+9=12$ thus $r+s\geq \sqrt{12}$ and from here we get $r+s+rs\geq 2\sqrt{3}+3$ Sonnhard.
03.02.2013 16:53
hello, for $r+s-rs=\sqrt{rs+(rs)^2}-rs>0$ this is true since $rs>0$. Sonnhard.
03.02.2013 18:14
pythagorazz wrote: Let $r$ and $s$ be positive real numbers such that $(r+s-rs)(r+s+rs)=rs$. Find the minimum value of $r+s-rs$ and $r+s+rs$ Let $r+s-rs=a,\ r+s+rs=b\Longleftrightarrow r+s=\frac{a+b}{2},\ rs=\frac{b-a}{2}.$, thus $r>0,\ s>0\Longleftrightarrow r+s>0,\ rs>0, D=(r+s)^2-4rs\geq 0$ $\Longleftrightarrow a+b>0,\ b-a>0,\ (a+b)^2\geq 8(b-a)\ \cdots [1]$. The given condition : $ab=\frac{b-a}{2}>0\ \cdots [2]$ From $[1],\ [2]$, we have $(a+b)^2\geq 8\cdot 2ab\Longleftrightarrow (a-b)^2+4ab\geq 16ab$ $\Longleftrightarrow (a-b)^2\geq 12ab$, by $[2]$, yielding $(b-a)^2\geq 6(b-a)$. Since $b-a>0$, we get $b-a\geq 6\ \cdots [3]$. Now, from $[2]$, we have $b=\frac{a}{1-2a}>0$, thus substituting this $[3]$ gives $\frac{a}{1-2a} -a\geq 6$ with $0<a<\frac 12$, or $a^2+6a-3\geq 0$ and $0<a<\frac 12\ \cdots [4]$ $-3+2\sqrt{3}<\frac 12\Longleftrightarrow 2\sqrt{3}<\frac 72\Longleftrightarrow \sqrt{48}<\sqrt{49}$, so from $[4]$, yielding $-3+2\sqrt{3}\leq a<\frac 12.$ Therefore, by $[3]\Longleftrightarrow b\geq a+6$, the desired minimum values are : $r+s-rs=-3+2\sqrt{3},\ r+s+rs=3+2\sqrt{3}.$
03.02.2013 18:26
hello, kunny have right with $s=1/2\,{\frac { \left( 1+\sqrt {-3+4\,{r}^{2}} \right) r}{-1+{r}^{2}}}$ we get $-1/2\,{\frac { \left( -2\,r-1+\sqrt {-3+4\,{r}^{2}} \right) r}{r+1}}\geq 2\sqrt{3}-3$ Sonnhard.
14.02.2013 15:57
$rs=(r+s)^2-(rs)^2\ge 4rs-(rs)^2 \Rightarrow rs\ge 3$ $r+s+rs=\sqrt{(rs)^2+rs}+rs\ge\sqrt{3^2+3}+3=2\sqrt{3}+3$. $r+s-rs=\sqrt{(rs)^2+rs}-rs=\frac{1}{\sqrt{1+\frac{1}{rs}}+1}\ge \frac{1}{\sqrt{1+\frac{1}{3}}+1}=2\sqrt{3}-3$.
14.02.2013 19:57
Wow, that's very simple solution, sqing.
15.02.2013 01:15
kunny wrote: Wow, that's very simple solution, sqing. Happy lunar New Year .