Let $p$ be an odd prime and $x$ be an integer such that $p \mid x^3 - 1$ but $p \nmid x - 1$. Prove that \[ p \mid (p - 1)!\left(x - \frac {x^2}{2} + \frac {x^3}{3} - \cdots - \frac {x^{p - 1}}{p - 1}\right).\]John Berman
Problem
Source: ELMO 2009, Problem 6
Tags: number theory, Elmo, Hi
31.12.2012 22:22
It suffices to show $\dbinom{p}{p-1}x^{p-1} + \dbinom{p}{p-2}x^{p-2} + ... + \dbinom{p}{1}x \equiv 0 \pmod{p^2}$ by multiplying the conclusion we want by $p$. So we want then: \[\sum_{i=0}^{p} \dbinom{p}{i} x^i \equiv x^p + 1 \pmod{p^2}\] \[ (1+x)^p \equiv x^p + 1 \pmod{p^2}\] Now it is a well-known problem that when $p|(a^2 + ab + b^2)$ then $p^3|((a+b)^p - a^p - b^p)$ for $p \ge 5$. Then since that $p|(x^2 + x + 1)$, we are done.
31.12.2012 23:12
dinoboy, could you please explain your first step? I did not see why one implies the other...
31.12.2012 23:16
I'm using the (highly) useful identity $\frac{(-1)^{k-1}p}{k} \equiv \dbinom{p}{k} \pmod{p^2}$
31.12.2012 23:38
Ok, now I've got it! Really nice identity Indeed, it's a know example of the Wilson's Theorem, now I realize there are many books with this relation. Also, nice proof for the problem
13.07.2017 19:24
Just for the sake of it, another finish, even though really the first step is the key. LEMMA. For $k=1,2,\dots,p-1$ we have \[ \frac{1}{k} \equiv (-1)^{k-1} \frac{1}{p} \binom{p}{k} \pmod p. \]Proof. Not too difficult. $\square$ Note that it suffices to just take the second factor and let the fraction be inverses, using the lemma we have \[ x - \frac {x^2}{2} + \frac {x^3}{3} - \cdots - \frac {x^{p - 1}}{p - 1} \equiv \frac{1}{p} \sum_{i=1}^{p-1} x^i \binom{p}{i} = \frac{1}{p} \left( (x+1)^p-x^p-1 \right). \]Note that the requirement $p \mid x^3-1$ but $p \nmid x-1$ gives us $p \mid x^2+x+1$, so $x+1 \equiv -x^2 \pmod p$ which lets us transform the above into \[ \frac{1}{p} \left( (x+1)^p-x^p-1 \right) = - \frac{1}{p} \left( x^{2p}+x^p+1 \right) = - \frac{1}{p} \cdot \frac{x^{3p}-1}{x-1}. \]As $p \nmid x-1$, it now suffices to prove $p^2 \mid x^{3p}-1$. For that use \[ x^{3p-1}-1 = \left(x^3-1 \right) \left(x^{3p-3}+x^{3p-6}+\dots+1 \right). \]The first factor is divisible by $p$, so if we can show that the second factor is divisible by $p$ as well, then we are done. But using $x^3 \equiv 1 \pmod p$ we get \[ x^{3p-3}+x^{3p-6}+\dots+1 \equiv \underbrace{1+1+\dots+1}_{p \text{ times}} = p \equiv 0 \pmod p. \]Done. $\square$
07.03.2020 20:53
Nice and easy! Here's my solution: Note that, for any $1 \leq i \leq p-1$, we have $$\frac{1}{i}=\frac{(p-i)!(i-1)!}{i!(p-i)!}=\frac{(i-1)!(p-(p-1))(p-(p-2)) \dots (p-i)}{i!(p-i)!} \equiv \frac{(-1)^{p-i} (p-1)!}{i!(p-i)!}=\frac{(-1)^{i-1}}{p} \binom{p}{i} \pmod{p}$$Using Wilson's Theorem, and the above fact, it suffices to prove $$0 \equiv (p-1)! \sum_{i=1}^{p-1} \frac{(-1)^ix^i}{i} \equiv \sum_{i=1}^{p-1} (-1)^{i+1}x^i \times \frac{(-1)^{i-1}}{p} \binom{p}{i} \Leftrightarrow \sum_{i=1}^{p-1} \binom{p}{i} x^i \equiv 0 \pmod{p^2}$$Since $x^3 \equiv 1 \pmod{p}$ (which also gives $3 \mid p-1$, since $3$ is the order of $x$ modulo $p$), so we get that $$\frac{1}{p}\sum_{i=1}^{p-1} \binom{p}{i} x^i \equiv \frac{1}{p} \left(\sum_{j=1}^{\frac{p-1}{3}} \binom{p}{3j}+x\sum_{j=1}^{\frac{p-1}{3}} \binom{p}{3j-2}+x^2\sum_{j=1}^{\frac{p-1}{3}} \binom{p}{3j-1} \right) \pmod{p}$$Let $\omega$ denote a complex cube root of unity. Then one easily gets (using the expansion of $(1+x)^p$, and from $1+\omega+\omega^2=0$, as well as by $p \equiv 1 \pmod{3}$) that $$a=\left(\sum_{j=0}^{\frac{p-1}{3}} \binom{p}{3j} \right)-\binom{p}{0}=\frac{2^p+(1+\omega)^p+(1+\omega^2)^p}{3}-1=\frac{2^p-\omega^{2p}-\omega^p}{3}-1=\frac{2^p-\omega^2-\omega-3}{3}=\frac{2}{3}(2^{p-1}-1)$$$$b=\left(\sum_{j=1}^{\frac{p+2}{3}} \binom{p}{3j-2} \right)-\binom{p}{p}=\frac{2^p+\omega^2(1+\omega)^p+\omega(1+\omega^2)^p}{3}-1=\frac{2^p-\omega^{2p+2}-\omega^{p+1}}{3}-1=\frac{2^p-\omega-\omega^2-3}{3}=\frac{2}{3}(2^{p-1}-1)$$$$c=\sum_{j=1}^{\frac{p-1}{3}} \binom{p}{3j-1}=\frac{2^p+\omega(1+\omega)^p+\omega^2(1+\omega^2)^p}{3}=\frac{2^p-\omega^{2p+1}-\omega^{p+2}}{3}-1=\frac{2^p-1-1}{3}=\frac{2}{3}(2^{p-1}-1)$$Thus, we find that $$a+bx+cx^2 =\frac{2}{3}(2^{p-1}-1)(1+x+x^2) \equiv 0 \pmod{p^2}$$where the last congruence follows by FLT, and the fact that $\text{ord}_p(x)=3$ implies $p \mid 1+x+x^2$. Hence, done. $\blacksquare$
13.04.2020 03:48
13.04.2020 07:43
$p \geq 7$
25.04.2020 08:28
I don't think I used the fact that $p\nmid x-1$. Using $\frac{1}{k}\equiv (-1)^{k-1}\frac{1}{p}\binom{p}{k}\pmod p$, we get that $$(p-1)!\sum_{k=1}^{p-1}(-1)^{k-1}\frac{x^k}{k}\equiv (p-1)!\sum_{k=1}^{p-1}\frac{1}{p}\binom{p}{k}x^k\equiv \sum_{k=1}^{p-1}\binom{p-1}{k}x^k\equiv (x+1)^{p-1}-1\pmod p.$$Now since $x^3\equiv 1\pmod p$, so $x\not\equiv -1\pmod p$, since $p>2$. So $\gcd(x+1,p)=1$. Then by FLT, $(x+1)^{p-1}-1\equiv 0\pmod p$, and we are done.
07.10.2020 07:00
redacted
03.12.2020 18:46
Sorry for reviving. Does anyone know if $p^3|((a+b)^p - a^p - b^p)$ is satisfied, then it implies that $p|(a^2 + ab + b^2)$ is satisfied also? Thank you!
03.12.2020 19:24
It is not necessarily true. Take $a\equiv -1\pmod{p^3}$ and $b\equiv 1\pmod{p^3}$. Then $p^3$ clearly divides $(a+b)^p-a^p-b^p$ but $a^2+ab+b^2\equiv1\pmod{p}$. However, what is the proof for this: Quote: Now it is a well-known problem that when $p|(a^2 + ab + b^2)$ then $p^3|((a+b)^p - a^p - b^p)$ for $p \ge 5$ I suspect it has to do with Hensel's lemma EDIT: @dinoboy only used the fact fact that if $p|(a^2 + ab + b^2)$ then $p^2|((a+b)^p - a^p - b^p)$, which can be proven rather easy with some tricks involving Wilson's theorem, but for $p^3$ it is quite hard. As an observation, to prove that if $p|(a^2 + ab + b^2)$ then $p^3|((a+b)^p - a^p - b^p)$, it is enough to prove that if $p|k^2+k+1$, then $p^3|(k+1)^p-k^p-1$
03.12.2020 19:51
Vlad-3-14 wrote: However, what is the proof for this: Quote: Now it is a well-known problem that when $p|(a^2 + ab + b^2)$ then $p^3|((a+b)^p - a^p - b^p)$ for $p \ge 5$ You can find some proofs here and here.
03.12.2020 19:55
Thank you @above.
20.12.2020 04:54
We work in $\mathbb{F}_p$ so as to discard the $(p-1)!$ term. Remark that $p\ne 3$. Additionally remark that the condition implies there is an element of order $3$ in $\mathbb{Z}_p^{\times}$, $x$, so $6\mid p-1$. By the harmonic mod $p$ trick, the sum is \[\tfrac 1p \sum_{k=1}^{p-1}x^k\binom{p}{k} = \tfrac 1p((1+x)^p-1-x^p).\]To show $(1+x)^p-1-x^p$ is divisible by $p^2$, we show it is divisible by $(x^2+x+1)^2$. Let $\omega=e^{2i\pi/3}$. Compute that \[(1+\omega)^p-1-\omega^p=(1+\omega)-1-\omega=0,\]so $x-\omega\mid (1+x)^p-1-x^p$. Compute that \[p(1+\omega)^{p-1}-p\omega^{p-1}=p-p=0,\]so $(x-\omega)^2\mid (1+x)^p-1-x^p$. This implies the desired.
27.08.2021 09:24
The sum computes in $[\mathbb{F}_p]$ to $\sum_{i=1}^{p-1} \frac{(-1)^{i+1}x^i}{i} \equiv \sum_{i=0}^{p} \dbinom{p}{i} x^i \equiv {(x+1)^p-x^p-1 \over p} \pmod p$ Now we will show that $p^2|(x+1)^p-x^p-1$ Denote $X$ to be the inverse of $x$ modulo $p$. Since $p|X^{3p}-1$ and so $p^2|(X^p-1)(X^{2p}+X^p+1)$ or $p^2|X^{2p}+X^p+1$ Since $X+1 \equiv -X^2 \pmod p$,we must have $(X+1)^p \equiv X^p+1 \pmod p$, implying the result.
12.10.2021 21:34
24.11.2021 20:23
Quite a nice problem you know!Though a bit wrong(p=3 doesn't work) Firstly (and obviously) note that by Wilson's, $p|(p-1)!+1$ So we'll show that p divides $[ x - \frac {x^2}{2} + \frac {x^3}{3} - \cdots - \frac {x^{p - 1}}{p - 1}$ Using $\frac{1}{k}\equiv (-1)^{k-1}\frac{1}{p}\binom{p}{k}\pmod p$ We'll show that $p$ divides $\frac{1}{p} \sum_{i=1}^{p-1} x^i \binom{p}{i}$ So we'll show that $p^2$ divides $\left( (x+1)^p-x^p-1 \right)$ (by binomial theorem) Since $x+1=pk-x^2$ for some k ,expanding we just need to show that $p|x^{2p} + x^p +1$ We know that $p \mid x^3 - 1$ and by the well known lemma $a\equiv b\pmod{m^n}$ implies $a^m\equiv b^m\pmod{m^{n+1}}$ we get that $p^2|x^{3p} -1$ Now all we need to do is to show that ($x^p -1$,p)=1 .Now assume to the contrary that this is true and p>3 .Notice that either p-1 or p+1 is a multiple of 3.Note that $p \mid x^3 - 1$ Now just use powers over congruences and subtract the 2 results.We get a contradiction.Hence $p|x^{2p} + x^p +1$ Thus we have proved the result
28.12.2021 17:04
I'm quite surprised to see that all the solutions so far depend on the "explicit" evaluation of the sum by the "harmonic mod p trick". There is an alternative "functional equation" route which I find very natural: Let $f(z)=z+\frac{z^2}{2}+\dots+\frac{z^{p-1}}{p-1}$ where we think of $f$ as a map from $\mathbb{F}_p \to \mathbb{F}_p$. We want to prove $f(-x)=0$ whenever $x$ has order $3$. As explained here (this is the 2011-N7 thread) one readily checks that we have the "functional equations" \[f(z+1)=f(-z)\]and \[f(z^2)=(1+z)f(z)+(1-z)f(-z).\]From there one can finish quickly: Note that $x^2+x+1=0$ and hence $f(-x^2)=f(x+1)=f(-x)$ from the first functional equation. Applying the second one first with $z=x^2$ and then again with $z=x$ we get \[f(x)=(1+x^2)f(x^2)+(1-x^2)f(-x^2)=-xf(x^2)+(1-x^2)f(-x)=-x((1+x)f(x)+(1-x)f(-x))+(1-x^2)f(-x)=f(x)+(1-x)f(-x)\]and hence $(1-x)f(-x)=0$ and hence $f(-x)=0$ as desired.
17.04.2022 16:45
We use the following "trick": for $k \not \equiv 0 \pmod{p}$, we have $$\frac{1}{k} \equiv (-1)^{p-1}\cdot \frac{1}{p}\binom{p}{k} \pmod{p}.$$Applying this, it suffices to show that \begin{align*} \sum_{k=1}^{p-1} \binom{p}{k}x^k &\equiv 0 \pmod{p^2}\\ \sum_{k=0}^p \binom{p}{k}x^k &\equiv x^p+1 \pmod{p^2}\\ (x+1)^p \equiv x^p+1 \pmod{p^2}. \end{align*}From $p \mid x^3-1$ but $p \nmid x-1$, we get $p \mid x^2+x+1$, so by Exponent Lifting $$\nu_p((x+1)^p+x^{2p})=1+\nu_p(x^2+x+1) \geq 2 \implies (x+1)^p \equiv -x^{2p} \pmod{p^2},$$so it suffices to prove that $p^2 \mid x^{2p}+x^p+1=\tfrac{x^{3p}-1}{x^p-1}$. Since $x^p-1 \equiv x-1 \not \equiv 0 \pmod{p}$, it follows that we only have to show $p^2 \mid x^{3p}-1$. This is again by Exponent Lifting—we have $$\nu_p(x^{3p}-1)=1+\nu_p(x^3-1)\geq 2,$$which yields the desired result. $\blacksquare$
30.12.2022 02:22
Can someone check this because none of the solutions above are matching this one. Thanks. We will refer to this as the modfrac relation: $$\frac{1}{k} \equiv (-1)^{p-1}\cdot \frac{1}{p}\binom{p}{k} \pmod{p}.$$It suffices to show \begin{align*}\frac{(p-1)!}{p} \left[\binom{p}{1}x + \binom{p}{2}x^2 + \binom{p}{3}x^3 + \cdots + \binom{p}{p-1}x^{p-1}\right] \equiv 0 \pmod{p} \\ x - x^2 + x^3 + \cdots - x^{p-1} \equiv 0 \pmod{p}\end{align*}by the modfrac relation. So we know \begin{align*}x + x^3 + \cdots + x^{p-2} \equiv x^2 + x^4 + \cdots + x^{p-1} \pmod{p} \\ (x-1)(x)(1 + x^2 + \cdots + x^{p-3}) \equiv 0 \pmod{p} \\ (1 + x^2 + \cdots + x^{p-3}) \equiv 0 \pmod{p} \\ \frac{1(1 - (x^2)^{(p-1)/2})}{1-x^2} \equiv 0 \pmod{p} \end{align*}the second to last line coming from the fact that $x^3 - 1 \equiv 0 \pmod{p}$ and $x \not \equiv 0 \pmod{p}$ which is why we can divide by $x$ and $x-1$ and the last line coming from the geometric formula. Hence by Euler totient function we know that \[\frac{1(1 - (x^2)^{(p-1)/2})}{1-x^2} \equiv \frac{1(1 - (x^{p-1}))}{1-x^2} \equiv 0 \pmod{p}\]as desired.
23.05.2023 06:46
Discard the $(p-1)!$ term, and allow fractions mod $p$. We will use the well known identity that $$\frac{1}{k}\equiv (-1)^{k+1}{p \choose k}\pmod p.$$Then, we have $$\sum_{n=1}^{p-1}\frac{x^n}{n}(-1)^{n-1}\equiv\sum_{n=1}^{p-1}x^n\frac{1}{p}{p \choose k}\pmod p.$$Thus, ti remains to show that $$\sum_{n=1}^{p-1}x^n\frac{1}{p}{p \choose k}\equiv 0\pmod p,$$which is also $$\sum_{n=1}^{p-1}x^n{p \choose k}\equiv 0\pmod {p^2}.$$By binomial theorem, the LHS is $(x+1)^p-1-x^p$, so it suffices to show that $$(x+1)^p\equiv x^p+1\pmod p.$$ This is easily verifiable by testing all possible cases for $p=3$. Assume $p>3$ from now on. Note that since $p\mid x^3-1$ but $p$ does not divide $ x-1$, we have $p\mid x^2+x+1.$ Thus, $x+1\equiv -x^2\pmod p$, so it suffices to show that $$-x^{2p}\equiv x^p+1\pmod {p^2}$$or $$x^{2p}+x^p+1\equiv 0\pmod{p^2}.$$Since the order of $x$ mod $p$ is 3, $x^p-1$ is not divisible by $p$ since we are assuming $p\neq 3$. Thus, it suffices to show that $$x^{3p}-1\equiv 0\pmod {p^2}.$$Rewrite as $$(x^3)^p-1^p\equiv 0\pmod {p^2}.$$This is just LTE: $$v_p((x^3)^p-1^p)=v_p(x^3-1)+v_p(p)\geq1+1=2,$$so we are done.
15.06.2023 03:45
Lemma: We have that for a prime $p$ and $1 \leq k \leq p$ that $1/k \equiv (-1)^{k - 1}/p \binom{p}{k} \pmod p$. Multiplying the conclusion by a factor of $p$, one concludes that it suffices to show that the sum $\sum_{k = 1}^{p - 1} \binom{p}{k}x^k = (1 + x)^p - (1 + x^p)$ is precisely $0$ modulo $p^2$. Now using the common fact that if for any arbitrary integers $a, b$ we have that $a \equiv b \pmod{p^n}$, then $a^p \equiv b^p \pmod{p^{n + 1}}$, we have that as $x + 1 \equiv -x^2 \pmod p \implies (1 + x)^p \equiv -x^{2p} \pmod{p^2}$, so at present it suffices to show $x^{2p} + x^p + 1 \equiv 0 \pmod{p^2}$. Using now the problem condition, we have that $p \mid x^3 - 1$, and in particular, we obtain $p^2 \mid x^{3p} - 1$, and so it once more and finally suffices to show $p^2 \nmid x^p - 1$. However this is trivial, as $v_p(x^p - 1) = v_p(p) + v_p(x - 1) = 1$, so that $p^2 \nmid x^p - 1$, as desired. $\blacksquare$
21.12.2023 18:59
Used the 10% hint on ARCH. Use the harmonic modulo $p$ trick, so that now we want to prove that $p^2$ divides \[ \sum_{k=1}^{p-1} \binom pk x^k=(x+1)^p-x^p-1. \]Since $x$ is a primitive cube root of unity, $p$ must be $1$ mod $3$. Now use LTE to see that \[ \nu_p\left((x+1)^p-(x+1-(x^2+x+1))^p\right)=\nu_p(x^2+x+1)+\nu_p(p)\ge 2, \]where $p\nmid x+1$ because $p>3$. Therefore, we want to prove that $p^2$ divides \[ -x^{2p}-x^p-1. \]Noting that $p\nmid x^p-1$, it suffices to prove that $p^2$ divides $x^{3p}-1$. However, this is a direct application of LTE as $x^{3p}-1=(x^3)^p-1$, so we win. $\blacksquare$
31.12.2023 22:24
By using Wilson's Theorem, note that it suffices to prove that, \[ \sum_{i=1}^{p-1} \dfrac{(-1)^ix^i}{i} \equiv 0 \pmod{p}. \] We know that $\dfrac{(-1)^{k-1}p}{k} \equiv \dbinom{p}{k} \pmod{p^2}$. Now note that proving $\displaystyle\sum_{i=1}^{p-1} \dfrac{(-1)^ix^i}{i} \equiv 0 \pmod{p}$ is equivalent to proving $\displaystyle\sum_{i=1}^{p-1} \dfrac{p(-1)^ix^i}{i} \equiv 0 \pmod{p^2}$. Now, we have, \begin{align*} \sum_{i=1}^{p-1} \dfrac{p(-1)^ix^i}{i} &= - \sum_{i=1}^{p-1} \dfrac{(-1)^{i-1}p}{i}\cdot x^i \\ &\equiv -\sum_{i=1}^{p-1} \binom{p}{i}x^i \\ &= - \left(\sum_{i=0}^{p} \binom{p}{i}x^i - 1 - x^p \right) \\ &= x^p + 1 - \sum_{i=0}^{p} \binom{p}{i}x^i\\ &\equiv x^p + 1 - (1+x)^p\\ &\equiv x^p + 1 +x^{2p}\\ &= \dfrac{x^{3p} - 1}{x^p-1} \pmod{p^2} .\end{align*} Firstly note that $x^p -1 \equiv x - 1 \not\equiv 0 \pmod{p}$. Now note that if we can show that $\nu_{p}\left(\dfrac{x^{3p} - 1}{x^p-1}\right) \ge 2$, then we are done. By LTE, $\nu_{p}\left(\dfrac{x^{3p} - 1}{x^p-1}\right) = \nu_{p}(x^{3p} -1) - \nu_{p}(x^p - 1) = (\nu_{p}(x^3 - 1) + \nu_{p}(p)) - 0 \ge 2$ and we are done.
12.02.2024 04:00
$\textcolor{blue}{Lemma.}$ $$\frac{1}{k}\equiv \frac{(-1)^{k-1}}{p}\binom{p}{k}\pmod {p^2}$$ By the lemma and Wilson´s Theorem it suffices to prove $$\binom{p}{1}x^1+\binom{p}{2}x^2+\cdots \binom{p}{p-1}x^{p-1}\equiv 0\pmod {p^2}$$Which is equivalent to $$(x+1)^p\equiv x^p+1\pmod{p^2}$$ then it suffices to show $p^2\mid f(x)=(x+1)^p-x^p-1$, we are going to prove that $f(x)$ has $\zeta_3$ as a double root, with this we finish as any polynomial that has $\zeta_p$ as a root is divisible by $x^{p-1}+\cdots+x+1$; as $\operatorname{Ord}_p(x)=3$ then $6\mid p-1$; note that $$f(\zeta_3)=(1+\zeta_3)^p-\zeta_3^p-1=1+\zeta_3-\zeta_3-1=0 \hspace{0.5cm}\text{and}\hspace{0.5cm} f^{\prime}(\zeta_3)=p(1+\zeta_3)^{p-1}-p\zeta_3^{p-1}=p\cdot 1-p\cdot 1=0$$(we used the fact that $1+\zeta_3$ is a 6-th rooth of the unity) And we are done.
12.02.2024 04:11
can't we use p adic analysis here/?/???
05.09.2024 16:56
Since $x^3 \equiv 1$ (mod $p$) and $x \not\equiv 1$ (mod $p$), we get that $ord_p(x)=3$, so $3 \mid p-1$. Since $p$ is odd, this implies that $6 \mid p-1$. Now, $x - \frac {x^2}{2} + \frac {x^3}{3} - \cdots - \frac {x^{p - 1}}{p - 1} $ $= \sum_{i=0}^{\frac{p-1}{6}-1} \left( \frac{x^{6i+1}}{6i+1}-\frac{x^{6i+2}}{6i+2}+\frac{x^{6i+3}}{6i+3}-\frac{x^{6i+4}}{6i+4}+\frac{x^{6i+5}}{6i+5}-\frac{x^{6i+6}}{6i+6} \right) \equiv \sum_{i=0}^{\frac{p-1}{6}-1} \left( \frac{x}{6i+1}+\frac{x+1}{6i+2}+\frac{1}{6i+3}-\frac{x}{6i+4}-\frac{x+1}{6i+5}-\frac{1}{6i+6} \right) $ $= x\sum_{i=0}^{\frac{p-1}{6}-1} \left( \frac{1}{6i+1}+\frac{1}{6i+2}-\frac{1}{6i+4}-\frac{1}{6i+5} \right) + \sum_{i=0}^{\frac{p-1}{6}-1} \left( \frac{1}{6i+2}+\frac{1}{6i+3}-\frac{1}{6i+5}-\frac{1}{6i+6} \right) $ $\equiv \frac{x}{p}\sum_{i=0}^{\frac{p-1}{6}-1} \left( \binom{p}{6i+1}-\binom{p}{6i+2}+\binom{p}{6i+4}-\binom{p}{6i+5} \right) + \frac{1}{p} \sum_{i=0}^{\frac{p-1}{6}-1} \left( -\binom{p}{6i+2}+\binom{p}{6i+3}-\binom{p}{6i+5}+\binom{p}{6i+6} \right) $ $= \frac{x}{p} \left( \sum_{i=0}^{\frac{p-1}{3}-1} \binom{p}{3i+1} - \sum_{i=0}^{\frac{p-1}{3}-1} \binom{p}{3i+2} \right) + \frac{1}{p} \left( \sum_{i=1}^{\frac{p-1}{3}} \binom{p}{3i} - \sum_{i=0}^{\frac{p-1}{3}-1} \binom{p}{3i+2} \right) = \frac{x}{p} \left( \frac{2^p-2}{3} - \frac{2^p-2}{3} \right) + \frac{1}{p} \left( \frac{2^p-2}{3} - \frac{2^p-2}{3} \right) =0 $ (mod $p$).
27.11.2024 01:53
Recall the well-known identity $$\frac{1}{k} \equiv (-1)^{k-1} \cdot \frac{1}{p} \binom{p}{k} \pmod p.$$It thus suffices to show that $$\sum_{k=1}^{p-1} \binom{p}{k} x^k \equiv 0 \pmod {p^2}.$$By the Binomial Theorem, this reduces to $$(x+1)^p \equiv x^p+1 \pmod{p^2}.$$Now, notice that by LTE $v_p((x+1)^p+(x^2)^p) \geq 2,$ so $(x+1)^p \equiv -(x^2)^p \pmod{p^2}.$ Hence, it suffices to show that $$x^{2p} + x^p+1 \equiv 0 \pmod{p^2}.$$Clearly, $x^p-1 \not \equiv 0 \pmod p.$ Meanwhile, by LTE, $$v_p(x^{3p}-1) = v_p(x^3-1)+v_p(p) \geq 2,$$and thus the desired result follows. QED