Find all real solutions $x$ to the equation $\lfloor x^2 - 2x \rfloor + 2\lfloor x \rfloor = \lfloor x \rfloor^2$.
Problem
Source: Pan African MO 2012 Day 1 Q3
Tags: function, floor function, algebra proposed, algebra
14.10.2012 16:19
Put $x=n+a$ where $n=[x], a=\{x\}$ and discuss the necessary condition $0\leqslant a<1$. Answer: $x\in\mathbb{Z}^-_0\cup [1,2)\cup\bigcup_{n=1}^\infty[n+1,1+\sqrt{n^2+1})$
13.09.2015 18:23
[x]^2 or [x^2] ????
13.09.2015 18:24
Farenhajt wrote: Put $x=n+a$ where $n=[x], a=\{x\}$ and discuss the necessary condition $0\leqslant a<1$. Answer: $x\in\mathbb{Z}^-_0\cup [1,2)\cup\bigcup_{n=1}^\infty[n+1,1+\sqrt{n^2+1})$ how did you get your answer ?
29.05.2017 18:06
Wouldn't the equation hold for any real value of $x$.
15.04.2020 08:06
a required bump /.
15.04.2020 09:01
Big hint Add 1 to both sides and rearrange You get the equation $[(x-1)^2] = [x-1]^2$
23.06.2020 21:57
06.09.2020 00:41
Rearrange the equation to $\lfloor x \rfloor ^2-2 \lfloor x \rfloor - \lfloor x^2-2x \rfloor =0$. This is a quadratic in $\lfloor x \rfloor$, so using the quadratic formula, we get that $$\lfloor x \rfloor=\frac{2 \pm \sqrt{4-4(- \lfloor x^2 - 2x \rfloor)}}{2}=1 \pm \sqrt{1+ \lfloor x^2-2x \rfloor}.$$$1+ \lfloor x^2-2x \rfloor$ needs to be a perfect square, so let it equal some nonnegative integer $y$. We have $$1+ \lfloor x^2-2x \rfloor =y^2 \implies \lfloor x^2-2x \rfloor =y^2-1$$$$\implies y^2-1 \leq x^2-2x < y^2 \implies y^2 \leq (x-1)^2 < y^2+1.$$The possible solutions for $x$ (by considering if $x-1$ is positive or negative) are $$x \in [y+1, \sqrt{y^2+1}+1) \text{ or } (1-\sqrt{y^2+1}, -y+1] \qquad \qquad \qquad (1)$$for a given $y$. Now, for the same $y$ in the previous line, going back to the equation of the quadratic formula, since $y=1 + \lfloor x^2-2x \rfloor$, $$\lfloor x \rfloor = 1 \pm y$$$$\implies y+1 \leq x <y+2 \text{ or } -y+1 \leq x <-y+2. \qquad \qquad \qquad (2)$$In order for $x$ to be a possible solution, it must satisfy equations $(1)$ and $(2)$. One can easily check that $y+2 \geq \sqrt{y^2+1}+1$ for all nonnegative integers $y$, so the possible solutions for $x$ are $[y+1, \sqrt{y^2+1}+1) \cup -y+1, y \in \mathbb{N}_0.$
17.09.2020 16:56
Let $k = \lfloor x \rfloor,$ $m = \{x\}.$ Plugging these into our equation and rearranging (if you add 1 to both sides), we see that $$0 \leq 2mk+m^2-2m <1.$$ Case 1: $k \geq 0.$ If $k =1,$ all values of $m$ work. If $k = 0,$ $m = 0.$ If $k \geq 2,$ we have the LHS of the inequality to be always true, and the RHS of the inequality we have $$m^2+2(k-1)m <1 \implies m^2+2(k-1)m+(k-1)^2<1+(k-1)^2.$$Thus, $m \in [0, \sqrt{(k-1)^2+1}-(k-1))$ which means $x \in [k, 1+\sqrt{(k-1)^2+1}).$ Case 2: $k<0$ We see the LHS of the inequality, $m^2+2(k-1)m \geq 0$ is not satisfied for $k \leq -1$ since $m \in [0, 1).$ Therefore, the only value of $m$ is $m=0.$ Thus, the solutions for $x$ are all nonpositive integers, $[1, 2),$ and $\bigcup_{k=1}^\infty[k,1+\sqrt{(k-1)^2+1})$
31.12.2020 00:11