Show that, for every positive integer $n$, there exist $n$ consecutive positive integers such that none is divisible by the sum of its digits. (Alternative Formulation: Call a number good if it's not divisible by the sum of its digits. Show that for every positive integer $n$ there are $n$ consecutive good numbers.)
Problem
Source:
Tags: logarithms, floor function, number theory proposed, number theory
04.10.2012 21:45
Let $n = 18$. Compare this problem with problem $2$ of Tournament of Towns $1984$: "Prove that among $18$ consecutive three digit numbers there must be at least one which is divisible by the sum of its digits."
05.10.2012 03:45
06.10.2012 15:12
We are going to find a number $k$ of the form $\frac{10^a-1}{9}$ such that if $b$ is the number of digits of $n$ then the numbers $10^bk+i$ with $i\in{1,2,\dots n}$ are not divisible by the sum of their digits. Let $p_1,p_2,\dots,p_n$ be primes greater than $n$ and greater than $3$ such that $(p_1p_2\dots p_n,\phi(p_1p_2\dots p_n)=1$ and they exist because we choose each $p_k$ greater than $\phi(p_1p_2\dots p_{k-1})$ and of the form $p_1p_2\dots p_{k-1}X-1$ (it exist because of Dirichlet's theorem) and in that way $(p_1p_2\dots p_{k-1}, \phi(p_k))=(\phi(p_1p_2\dots p_{k-1}),p_k)=1$ (*). Now we find with CRT, which we are allowed to do because of (*), an $a$ such that $a\equiv -s(i) \mod{p_i}$ and $\phi(p_1p_2\dots p_n)|a$ then $p_1p_2\dots p_n|k$ but since $p_i>n\geq i$ then $p_i\not| i$ then $p_i\not 10^bk+i$ but $p_i|a+s(i)=s(k)+s(i)=s(10^bk+i)$ then $s(10^bk+i)\not |10^bk+i$
08.10.2012 07:51
This problem turns out to be mine. Here are a few solutions/remarks.
06.04.2015 02:10
La demostración lo haré por inducción. En efecto, para cada entero positivo $n$, sea $S(n)$ la suma de sus respectivos dígitos. Notemos que para $n=1$, el ejemplo es $14$, y por si fuera poco, daremos el ejemplo para $n=2$, que es: $14, 15$. Supongamos que existen $n$ enteros positivos consecutivos, con $n \geq 2$: $x+1, x+2, ... , x+n$ tales que ninguno es divisible por la suma de sus dígitos. Para cada $1 \leq i \leq n$, sea $t_i$ el producto de todos los factores primos diferentes de $2$ y $5$ del número $S(x+i)$, en caso que no tuviera consideremos como $t_i=1$ y $\phi(1)=1$. Sea $k=r \times \prod_{i=1}^{n}S(x+i) \times \prod_{i=1}^{n} \phi(t_i)$, donde $r$ es suficientemente grande. Note que para un entero positivo $m$ suficientemente grande, y para cada $1 \leq i \leq n$, se cumple que $9k+S(x+i)$ no puede dividir al número $(10^k-1) \times 10^m+(x+i)$ y lo demostraremos por el absurdo. En efecto, supongamos que es cierto, note que $S(x+i)$ divide a $(10^k-1) \times 10^m$, pues $V_2(S(x+i)) \leq V_2(10^m)$, $V_5(S(x+i)) \leq V_5(10^m)$ y $t_i \mid 10^k-1$, luego como $S(x+i) \mid 9k+S(x+i)$ y $S(x+i) \mid (10^k-1) \times 10^m$, se deduce que $S(x+i) \mid x+i$, lo cual es una contradicción. Observe que este resultado realmente no depende de $m$, solo importa que $m$ sea suficientemente grande. Por otro lado, tomemos el mismo $m$ de arriba. Note que ambos números: $A=(10^k-1) \times 10^m + x+n+1$ y B=$(10^k-1) \times 10^{m+1}+x+n+1$ no pueden ser simultáneamente divisibles por $9k+S(x+n+1)$, pues si eso ocurre, entonces $9k+x+n+1\mid 10A-B$, es decir, $9k+x+n+1\mid 9(x+n+1)$, pero esto es imposible, pues $k$ es suficientemente grande. Luego, podemos asegurar que existe un entero $b$ tal que $b=m$ o $b=m+1$ tal que para cada $1 \leq i \leq n+1$ se cumple que $9k+S(x+i)$ no divide a $(10^k-1) \times 10^b+x+i$, quedando completa la inducción
19.04.2015 18:20
If we want to avoid any Dirichlet-ish arguments, you can do the below: Choose $p_1, p_2, \dots, p_n$ to be very large primes, and choose a $k$ such that $p_i | k+i.$ (Do this using CRT). Next, find an $x$ such that $p_i | x +s(k+i)$ for all $i$. (Once again, CRT) In fact, we can find arbitrarily large $x$. I think $x > 2P$ should be enough for what follows. Let $P = p_1p_2\dots p_n$ and let $S$ be the set of powers of $10$ $\pmod{P}$. I claim that $|S+S+ \dots + S| = P.$ $S$ is added $x$ times. In other words, $S+S+\dots +S$ can take any value $\pmod{P}$. The proof is very easy once you notice that $1, 10 \in S$. Say that in the sum, $1$ is used $a$ times, and $10$ is used $b$ times. Then we need to solve the equation \[ a+b = x \] \[ a+10b \equiv y \pmod{P} \] for any $y$, $a, b$ positive integers. It is easy to check that this always gives a solution for $a, b$. Given the above lemma, find a set $T$ of very large powers of 10 such that $|T| = x$ and for any $p_i$, $p_i \not| k+i+\sum_{t \in T}{10^t}.$ This is possible because as explained above, $S+S+\dots + S$ covers everything. This construction finishes the problem.
21.08.2022 01:28
We call a positive integer soba if it is not divisible by its sum of digits. Let $p_1,p_2, \ldots ,p_n$ be arbitrarily large distinct primes, $s$ be the sum of digits function, and $10^k>n$. By crt, there exists a positive integer $X$ for which $X+s(i)+1$ is divisible by $p_i$ for all positive integers $i \leq n$. Thus, if we set set $s(Y)=X$ then $s(10^k \cdot Y+i)+1$ is divisible by $p_i$. Thus, let $a_i=10^k \cdot Y+i$. We claim that there exists a positive integer $N>n$ for which $10^N+a_i$ is soba for all $i$. Indeed, notice that $s(10^j+a_i)=s(a_i)+1$. Thus, if $s(10^\alpha+a_i)=s(a_i)+1$ divides $10^\alpha+a_i$ and $s(10^\beta+a_i)=s(a_i)+1$ divides $10^\beta+a_i$, then $s(a_i)+1$ divides $(10^\alpha+a_i)-(10^\beta+a_i)=10^\alpha-10^\beta$. Which implies that $\alpha-\beta \geq \text{ord}_{p_i}(10) \geq \log(p_i)$ which is arbitrarily large. Thus, by $p_i$'s being sufficiently large, they cannot cover every possible of $N$. So there exists a choice of $N$ where all of the numbers are soba. $\blacksquare$
03.09.2023 03:32
Take $p_1,p_2,...p_n$ be very big primes such that $(p_i,p_j-1)=1$ for any $i,j,$ which is obviously possible. Now, we choose some $s(A)$ to satify that $p_i\mid s(A)+i$ for every $i\in\{1,2,\dots, n\}.$ Our objective is to find some $A$ multiple of $p_1\cdots p_n$ with suck $s(A).$ If we can obtain this, we'll be done, as we can the choose a very big $a$ and consider $10^aA.$ In that case, we get that for $j=s(i),$ then $$p_j\mid s(10^aA+i)\mid 10^aA+i\implies p_j\mid i,$$but this will be a contradiction if we choose all $p's$ to be as big as we want. Now the desired $s(A)$ satisfies a certain congruence modulo $p_1\cdots p_n.$ In order to end the problem we will show that we can choose some $B$ multiple of $p_1\cdots p_n$ such that $s(B)$ obtains any value we want modulo $p_1\cdot p_k.$ Assume the contrary, that is, we $s(np_1\cdot p_n)$ obtains finitely many values modulo $p_1\cdots p_n.$ Now, this values are trivially closed under addition, and thus, applying Bezout, we get that all these values must be divisible by some $p_i.$ We will show this is a contradiction, which will end the problem. That is because we can choose number $10^{\prod (p_i-1)}-1.$ By Fermat this number is divisible by all $p_i's,$ but at the same time is a number with $\prod (p_i-1)$ $9's.$ Thus $s(10^{\prod (p_i-1)}-1)=9\cdot \prod (p_i-1),$ but as we chose that $(p_i,p_j-1)=1$ for any $i,j,$ this value is not divisible by any of the $p_i's,$ ending the problem.
25.09.2023 17:09
Let $s(n)$ denote the sum of the decimal digits of $n$. We begin with the following. Claim: Let $e$ be a positive integer. Then for any $1 \leq n \leq 10^e$, $s(n(10^e-1))=9e$. Proof: See here. Let $P(x)=(x+1)\ldots(x+n)$. Pick $k \gg n$ massive so that $P(10^k-1) \ll 10^{\frac{10^k-1}{9}}-1$ and define $N=(10^{\frac{10^k-1}{9}}-1)P(10^k-1)$. Apply the claim to get that $s(N)=10^k-1$. Then pick some large enough $\ell$ so that the decimal digits of $10^\ell N+i$ don't overlap for $1 \leq i \leq n$ and consider the integers $10^\ell N+1,\ldots,10^\ell N+n$. The digit sum of any of these integers is between $(10^k-1)+1$ and $(10^k-1)+n$, and thus divides $P(10^k-1)$ and therefore $10^\ell N$, so if some $1 \leq i \leq n$ has $s(10^\ell N+i) \mid 10^\ell N+i$, then $s(10^\ell N+i) \mid i$. But since we picked $k \gg n$, the LHS is much larger than $10^n-1$ and we get a size contradiction. Therefore we are done. $\blacksquare$
04.12.2023 21:00
Let $s(n)$ be the sum of its digits. Let $a$ be an arbitrary positive integer. Let $p_1$ be a prime such that $p_1 > a + n$ and define $(p_n)_{n >= 1}$ such a way: (a): Every $p_i$ is prime. (b): $p_i - 1$ is relatively prime to $p_1p_2 \cdots p_{i-1}$. By Dirichlet's theorem, there exist sequence $(p_n)_{n >= 1}$ that satisfies $(a)$ and $(b)$. Now by CRT, there exists $t \equiv -s(a + i) (p_i)$, for $1 \le i \le n$ and $(p_1 - 1)(p_2 - 1) \cdots (p_n - 1) \mid t$. Then $s((a + i) \cdot 10^t + \frac{10^t - 1}{10 - 1}) = s(a + i) + t$ and since $p_i \mid s(a + i) + t$, $(a + i) \cdot 10^t + \frac{10^t - 1}{10 - 1} \equiv (a + i) (p_i)$, therefore $(a + i) \cdot 10^t + \frac{10^t - 1}{10 - 1}$ isn't divisible by $s(a + i) + t$, for $1 \le i \le n$. Thus we're done. $\blacksquare$
12.01.2025 19:46
Fix $n$. Call a number smooth if it is divisible by a prime less $9n + 1$. Claim: There exists a $c$ such that at most $c \sqrt{N}$ of the numbers less than $N$ are smooth. Proof. Let $t$ be the number of primes less than $9n + 1$. Each smooth number can be represented as $a \cdot b^2$ for one of $2^t$ choices of $a$. This means that we can take $c = (1 + \varepsilon)2^t$ to get the result. $\blacksquare$ As such, this implies there exist an interval $I = [N, N+n]$ of non smooth numbers with $N-1 \ge n+1$. Since the sum of digits of a number are less than a number and greater than $0$, if we fix some $10^N \mid k$ such that the digit sum of $k$ is $N-1$, then the sum of the digits of $k + i$ for $1 \le i \le n$ are non smooth. We now choose $k$ to get the desired result. For each $i$, let $p_i > 9n + 1$ be a prime dividing the digit sum of $k + i$. We initially start off $k$ as $\sum_{i=1}^{N-1} 10^{(i+N)O}$ where $O$ is the lowest common multiple of the orders of $10 \pmod{p_i}$. We can then consider replacing $10^{(i+N)O}$ with $10^{(i+N)O + 1}$, which increase the value of each $k + i \pmod{p_i}$ by $9$. If we consider the result of doings this $n$ times, we get $n+1$ candidates $k_0, k_1, \dots, k_n$ which each have distinct residues $k_j + i \pmod p_i$. Then since at most one candidate is $0 \pmod{p_i}$, one of the candidates has all $k + i \pmod{p_i}$ be nonzero, which wins.