Problem

Source: Iran 2005

Tags: geometry, circumcircle, Euler, conics, projective geometry, geometry proposed



Suppose $H$ and $O$ are orthocenter and circumcenter of triangle $ABC$. $\omega$ is circumcircle of $ABC$. $AO$ intersects with $\omega$ at $A_1$. $A_1H$ intersects with $\omega$ at $A'$ and $A''$ is the intersection point of $\omega$ and $AH$. We define points $B',\ B'',\ C'$ and $C''$ similiarly. Prove that $A'A'',B'B''$ and $C'C''$ are concurrent in a point on the Euler line of triangle $ABC$.